ANTARCTIC ROADMAP
CHALLENGES WORKSHOP GUIDE

COMNAP
Council of Managers
of National Antarctic Programs
TABLE OF CONTENTS

I. Introduction
2. Supporting Material
3. Goals of the Workshop
4. Synthesis
5. Workshop Outputs

Appendices
 i. Workshop Schedule (subject to change)
 ii. List of Attendees
 iii. Writing Group Assignments
 iv. Writing Group Report Forms and Instructions (separately provided)
 v. ARC Survey 1 and 2 Results (to be provided on completion)
 vi. Horizon Scan Questions
 vii. Six priorities for Antarctic science - Nature COMMENT
 viii. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond - Antarctic Science
Antarctic Roadmap Challenges
Workshop Guide

1. Introduction

Research in the Antarctic requires substantial and sustained investments by governments to meet the challenges of conducting science in one of the most remote and extreme environments on Earth. Our understanding of change in the Antarctic region and why it is happening is important to informing the global debate about the future of our planet. Wide community involvement and advice was solicited to assist in translating the highest priority Antarctic research questions into actionable requirements for critical supporting technologies, access, infrastructure, and logistics. The ‘enabling’ of the Antarctic science roadmap is intended to inform those that fund research and provide science support about what will likely be needed in order to deliver Antarctic science over the next two decades and beyond.

In 2014, the 1st SCAR Antarctic and Southern Ocean Science Horizon Scan assembled world leading Antarctic scientists, policy makers, leaders, and visionaries to identify the most important scientific questions that will or should be addressed by research in and from the Antarctic over the next two decades. The outcome was publication of the 80 most important Antarctic research questions identified by the community. The list was published in the journal Nature as a COMMENT (Appendix vii) and Antarctic Science as "A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond" (Appendix viii).

Delivery of the "roadmap" faces a range of important challenges. Therefore COMNAP is leading the second stage in the process with the Antarctic Roadmap Challenges (ARC) project1. This project will focus on answering the question: "How will national Antarctic programs meet the challenges of delivery of Antarctic science in the next 20 years or more?"

Using the SCAR Horizon Scan roadmap as one indication of future science, a review of the highest priority scientific questions reveals the challenges for national Antarctic programs are of a practical and technical nature. The COMNAP ARC Project focuses on three of the challenges identified:

Challenge 1: Extraordinary Logistics Requirements

“Future research in Antarctica will require expanded, year-round access to the continent and the Southern Ocean.” (Kennicutt II 2014b, page 12)

Antarctic logistics requirements are already complex and challenging. The geographic isolation, the extreme physical conditions (weather and darkness), the expense, and the implementation of policy and reporting requirements make planning and logistics complicated and

1 The organizers acknowledge the financial support of the Council of Managers of Antarctic Program, the Scientific Committee on Antarctic Research, and the Tinker Foundation. In addition, several National Antarctic Programs provided financial support for the participation of attendees.
demanding on people, resources and time. Inter-continental air routes are limited, though well-established, but future science requirements indicate a need for expansion of intra-Antarctic flights and ground traversing capabilities, including expanding into understudied but scientifically interesting regions. Future research will require greater data gathering and sample retrieval from atmospheric, sub-glacial, and deep sea environments which will require expanded logistics capabilities. Science that is achievable using improved remote sensing capabilities may introduce new challenges. Aircraft, satellites, balloons, and unmanned aerial vehicles will not only continue to be used as platforms for science but usage is expected to increase. Research vessels, icebreakers, and cargo ships provide important logistics capabilities. Such vessels are expensive to build, operate and maintain requiring long term substantial investments by nations. Deployment of scientific equipment to Antarctica requires years of advance planning and must include consideration of contingencies such as redundancy in systems and supplies in cases where alternative operations must be implemented.

Challenge 2: Technology

“**Innovative experimental designs, new applications of existing technology, invention of next-generation technologies and development of novel air-, space- and animal-borne observing or logging technologies will be essential.**” (Kennicutt II 2014b, page 12)

Science has historically been advanced by improvements in technology – notable is the emergence of space-based technologies over the last six decades. New designs, instrumentation, sensor technologies (from micro- to macro-scale), and ‘clean’ technologies will continue to be required and improved as scientists probe ever more complex questions. Technological advances not only support on-going science but may limit what science can be done and, in some instances, change the scientific questions being asked (for example, genomics has revolutionized ecology). Marine research requires technologies that allow for exploration of the benthos, the water column, areas below ice shelves, and the water/ice/atmosphere interface. This will require improvements in long-duration buoys and associated sensors, remotely operated and autonomous underwater vehicles, and miniaturized instruments deployable on animals.

Challenge 3: Infrastructure

“**Antarctica and the Southern Ocean occupy a vast territory, much of which is inaccessible during Austral winter months. Even during summer months the conditions prove challenging…infrastructure is essential to survival and is vital to the conduct of science. Two kinds of infrastructure can provide opportunities to advance scientific research in Antarctica: physical systems infrastructure, including transport, and cyber-infrastructure.**” (National Research Council 2011, page 109).

The original expansion of physical systems infrastructure on the continent began in 1957/58 in support of the International Geophysical Year. Upgrades, rebuilds and new stations and related facilities have occurred in the intervening years especially during the recent International Polar Year 2007-2008. Infrastructure implies a ‘permanence’ and so does not include the numerous temporary field facilities established for a finite period of time to support specific activities or science programs. There are vast regions of the Antarctic that remain virtually unexplored, except by space-borne sensors, where there has been no direct human egress. However, there are science questions which will require extensions into areas not now occupied.
or accessible. This includes remote land areas, sub-ice environments, beneath ice shelves and in the deep sea. Infrastructure requirements for many of the astronomy-related programs require winter-over infrastructure and long-term observing programs, for example, the discovery and subsequent long-term data set collection of ozone gas depletion data would not have been possible without a station to house instrumentation. Do we continue to build infrastructure in Antarctica and, if so, in what form and where? It can be envisioned that future programs will require simultaneous presence across the continent and ocean – how will these nodes of exploration be established and coordinated?

To address these complex and challenging issues a series of community involvement activities have been conducted and will culminate in a workshop of experts and experienced Antarctic scientists and engineers, logisticians, National Program Directors and Managers, and technologists. The product of the workshop, and ultimately of the ARC Project itself, is a reference document which will be a tool for the community in regards to the likely science support requirements needed to answer the highest priority Antarctic-related questions over the next 20 years.

Writing Groups (Appendix 11.) at the ARC Workshop and individual report sections will be organized around the Horizon Scan clusters of questions:

A. Antarctic atmosphere and global connections (Blue Group)
B. Southern Ocean and sea ice in a warming world (Red Group)
C. Antarctic ice sheet and sea level (Yellow Group)
D. Dynamic Earth – probing beneath Antarctic ice (Green Group)
E. Antarctic life on the precipice (Orange Group)
F. Near-Earth space and beyond – eyes on the sky (Green Group)
G. Human presence in Antarctica (Orange Group)

To manage the discussions, five writing groups have been established, with the ‘Near-Earth space and beyond – eyes on the sky’ cluster considered in conjunction with the ‘Dynamic Earth – probing beneath Antarctic ice” cluster and the ‘Human presence in Antarctica’ cluster considered with the “Antarctic life on the precipice” cluster. Each group has been color-coded and your name badge identifies into which group you are assigned.

2. Supporting Material

A wide array of resources will be taken into consideration before and during the workshop.

Foundational Documents and Resources – A resource page will be created to provide easy access to supporting material that all attendees should be familiar with pre-workshop and consulted during the workshop. Workshop participants should be conversant with the process and outcomes of the SCAR Antarctic Science Horizon Scan and the COMNAP ARC Project. These activities are fully documented and reported in three published articles/reports, two web sites and a series of Horizon Scan preliminary technological challenges and extraordinary logistics requirement assessment summaries:
1. *Six Priorities for Antarctic Science*, Kennicutt et al, 2014a, Nature 512, 23–25.including Supplementary information which contains the list of 80 highest priority scientific questions (Appendix vii.).
4. SCAR Science Horizon Scan website – http://www.scar.org/horizonscanning
5. COMNAP Antarctic Roadmap Challenges Project web site – https://www.comnap.aq/Projects/SitePages/ARC.aspx
6. *Horizon Scan preliminary technological challenges and extraordinary logistics requirement assessment summaries*. These also include brief explanations of the science questions including further detail on the research to be accomplished.

ARC Survey 1 and 2 Results – ARC Survey results will be provided with a text summary and tabular synopses of responses (Appendix v.).

Community White Papers – Various communities have chosen to provide short white papers addressing the challenges outlined by the ARC project.

Strategic plans, workshop reports and other materials – The ARC project does not wish to duplicate planning efforts by others but take advantage of various summaries, reports and plans developed by the community within the last five years (since 2010) that describe aspirations in regard to future scientific directions and technological needs and requirements to deliver research in the Antarctic region. As these materials are identified a catalogue will be developed and made accessible.

3. Goals of the Workshop

A consistent format is to be adopted by each Writing Group to ensure compatibility and comparability of outputs for assembly into the final project report (templates are provided). The format for Writing Group reports closely follow the structure and content of the two ARC Surveys. However, the goal is not for the Writing Group to collectively take the survey but to synthesize all inputs and arrive at consensus conclusions. The goals for the Workshop are to describe for each cluster of science questions (-G above):

- 1 - Science objectives
- 2 - Highest priority technologies
- 3 - Highest priority access, infrastructure and logistics needs
- 4 - Summary and Conclusions

The outcomes of the discussions will then be synthesized across the seven Horizon Scan scientific question clusters.
Each Writing Group is to identify the top 5 priorities for Goals 2 and 3 and the overall top 10 priorities for Goal 4 but lower priority needs should be examined. It is at the discretion of the writing groups to determine final prioritizations. Major deviations from Survey results are to be explicitly justified based on facts and the knowledge of the assembled experts. Within the top five priorities a “rank-order” (1st to 5th highest priority) is to be indicated if consensus can be attained. If not, the top five should be identified with no ranking with an indication that consensus could not be obtained. Dissenting opinions should be noted as necessary. Overall confidence in conclusions is to be indicated as (1) H - “high confidence” - high likelihood that the technologies identified will produce significant scientific advancements, (2) M - “moderate confidence” – reasonably good likelihood that the technologies identified will produce significant scientific advancements or (3) L - “low confidence” – noteworthy uncertainty that the technologies identified will produce significant scientific advancements (this might be due to a lack of evidence or unknowns). It is important that conclusions be communicated in a way that decision makers can estimate risk versus potential scientific rewards (a qualitative cost-benefit analysis). The assessments will be reported by Horizon Scan scientific question cluster to allow National Antarctic Programs to cross-map their interests, areas of scientific expertise and capabilities with ARC outcomes.

The content of Writing Group reports will include:

Goal #1: Scientific Objectives - *The goal is a concise statement of the scientific questions to be answered in each cluster.* A brief summary of the clusters from the SCAR Antarctic Science Horizon Scan publications will be provided. These summaries are not to be re-written or re-negotiated and will be verbatim from the published Horizon Scan articles. If in the expert opinion of workshop participants significant gaps are identified that must be addressed this should be concisely described in a subsection – “Important Gaps in the Horizon Scan Science Roadmap”. The Science Roadmap is taken as a “given” and is the foundation for discussions, deliberations and conclusions of the ARC writing groups. The objective is not to redefine science priorities as the Horizon Scan represents the consensus of the community using the Horizon Scan methodology and has been widely debated and vetted.

Goal #2 –Technologies – *The goal is identification of the highest priority technological requirements to support the conduct of research to answer the science questions in each cluster.* In addition, the priorities that are either of such complexity, require long term investments to achieve and/or have an associated cost that realistically can only (or best) be achieved by international coordination, planning and partnerships are to be identified. Survey results and Horizon Scan summaries are the starting point for these discussions. The Writing Groups will assess the representativeness and completeness of these outcomes based on experience and expertise. The report is to include these elements:

a) Highest priority technological developments needed (rank ordered if possible).
b) Current status of the technologies – do they exist, are they widely available, what is the stage of development?
c) Where (geographic, platform, etc.) are these technologies most likely to find most utilization?
d) At what temporal scales are these technologies to be used and how frequently?
e) How broadly applicable are these technologies to answering the highest priority scientific questions? This gives an indication of the size of the potential user community and the extent to which technologies might serve multiple purposes if properly configured for greatest impact on scientific advances.

f) Feasibility will be assessed based on estimations of the current status of the technology development, the timeframe for development and the cost for development.

g) Those technological requirements that are of such complexity, require long term investments to achieve and/or have an associated cost that realistically can only (or best) be achieved by international coordination, planning and partnerships will be explicitly identified.

h) Technologies and/or capabilities currently available that have not been used in Antarctica that would have a transformative effect on research if they were available will be identified.

i) Challenges identified that are beyond the capabilities/control of National Antarctic Programs (e.g., major technological breakthroughs unlikely to be solely developed for use in Antarctica) will be specified.

Goal #3 - Logistics, access, and infrastructure requirements to deliver the science – The goal is assessment based on consideration of the science objectives, the mix of technologies identified and the implications for the extent, reach and frequency of access (spatial and temporal) to the southern Polar Regions for configuring infrastructure architectures and logistics capabilities. In addition, the priorities that are either of such complexity, require long term investments to achieve and/or have an associated cost that realistically can only (or best) be achieved by international coordination, planning and partnerships are to be identified. Survey results and Horizon Scan summaries are the starting point for these discussions. Assessments are to take into consideration the current status of required capabilities, existing plans for development, and the estimated time to availability of the capabilities, and the estimated costs to provide the required access, logistics and infrastructure. Major trends (changes) in logistics, access, and infrastructure requirements are to be identified that allow for long term strategic realignment of capabilities, resources and/or capacity. For example, will remote sensing become the preferred mode of observations reducing the demand for ‘on the ground presence’? Will major investments need to be made in ships capable of operating in the Polar Regions? Is there a need for internationally coordinated facilities and equipment on the continent or can southern located international centers and facilities be nodes of instrumentation and facilities reachable by air links? (Only illustrative examples)

Goal #4 - Summary and Conclusions – The goal is to identify the major “take home messages”. Concise statements of the "big issues", the greatest needs and those investments that have the highest likelihood of producing the maximum scientific return and impact over the next 20 years or more are to be identified. Major trends (changes) in technologies, logistics, access, and infrastructure requirements are to be identified that allow for long term strategic alignment of capabilities, resources and/or capacity. The outcome of this goal is to be concise bullet points of the top 10 overall priorities.
4. Synthesis

Collectively the Writing Group conclusions will be analyzed for commonalities that cross-cut the scientific question clusters. Depending on time constraints and progress at the Workshop, this analysis may be conducted by the organizers and discussion leads post-workshop followed by an opportunity for attendee review and comment. From the individual cluster conclusions major trends in technological and science delivery requirements will be identified. Criteria for highest priorities include those actions and investments that are predicted to have the greatest impact, serve the widest range of demands, and are most cost effective based on the scientific return.

5. Workshop Outputs

A series of outputs are planned to ensure wide and timely communication of the outcomes of the workshop. These may include, but not be limited to:

1. A presentation of preliminary findings to the following COMNAP Annual General Meeting—depending on progress at this workshop this may be an update and/or a discussion of the first outputs.

2. A “glossy” workshop report that details the methods, the process and the outcomes. To be accompanied by a short 2 to 4 page glossy fold-out brochure for wide distribution to non-scientists and decision-makers (target by the end of CY2015).

3. A high profile summary on par with the Horizon Scan Nature COMMENT (all attendees will be co-authors).

4. A comprehensive record of the project in a peer-reviewed article. The initial target will be Antarctic Science to produce a companion article the “Science Roadmap” article. (all attendees will be co-authors)

5. Presentations at international meetings – a session at the 2015 AGU has been approved where ARC might be presented. A companion session will be proposed for EGU in the spring of 2016.

6. Presentations to individual National Antarctic Programs as requested.

7. All workshop participants are encouraged to be “ambassadors” of the project and present the outcomes as opportunities arise, especially within their own countries in first languages. All power point presentations developed will be made widely available.

8. Continue to build the ARC web pages on the COMNAP web site. This site will be the archive of all ARC related materials as a companion to the Horizon Scan website at the SCAR. Link the two web sites.

The extent of follow-on activities will be determined by time availability and the resources available to conduct the publication and communication efforts.
<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Email address</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackley</td>
<td>Stephen</td>
<td>Stephen.ackley@utsa.edu</td>
<td>Sea ice geophysics</td>
</tr>
<tr>
<td>Anandarkrishnan</td>
<td>Shridar</td>
<td>sx17@psu.edu</td>
<td>Glaciology/seismology/geophysics</td>
</tr>
<tr>
<td>Biebow</td>
<td>Nicole</td>
<td>nicole.biebow@awi.de</td>
<td>EU-PolarNet/International cooperation</td>
</tr>
<tr>
<td>Blankenship</td>
<td>Don</td>
<td>bblank@ig.utexas.edu</td>
<td>Geophysics/cryospheric evolution</td>
</tr>
<tr>
<td>Cardenas</td>
<td>Ceasar</td>
<td>ccardenas@lnach.cl</td>
<td>Marine Biologist</td>
</tr>
<tr>
<td>Cassano</td>
<td>John</td>
<td>john.cassano@colorado.edu</td>
<td>Atmospheric science/meteorology/climate</td>
</tr>
<tr>
<td>Chown</td>
<td>Steven</td>
<td>steven.chown@monash.edu</td>
<td>Biogeography/terrestrial ecology/policy</td>
</tr>
<tr>
<td>Colwell</td>
<td>Steve</td>
<td>s.colwell@bas.ac.uk</td>
<td>Operational meteorology</td>
</tr>
<tr>
<td>Cowan</td>
<td>Don</td>
<td>Don.Cowan@up.ac.edu</td>
<td>Microbial ecology/genomics</td>
</tr>
<tr>
<td>Escuita Dotti</td>
<td>Carla</td>
<td>cescuita@ugr.es</td>
<td>Geologist/paleoclimate</td>
</tr>
<tr>
<td>Falkner</td>
<td>Kelly</td>
<td>kfalkner@nsf.gov</td>
<td>Integrated system science/MNAP</td>
</tr>
<tr>
<td>Finnemore</td>
<td>Michelle</td>
<td>michelle.finnemore@comnap.aq</td>
<td>COMNAP Executive Secretary</td>
</tr>
<tr>
<td>Francis</td>
<td>Jane</td>
<td>janefr@bas.ac.uk</td>
<td>Paleobotany/paleoclimate/MNAP</td>
</tr>
<tr>
<td>Frenot</td>
<td>Yves</td>
<td>yves.frenot@ipev.fr</td>
<td>Terrestrial ecology/policy/MNAP</td>
</tr>
<tr>
<td>Guldahl</td>
<td>John</td>
<td>guldahl@npolar.no</td>
<td>Logistics/Traverse</td>
</tr>
<tr>
<td>Hall</td>
<td>John</td>
<td>hall@bas.ac.uk</td>
<td>Operations</td>
</tr>
<tr>
<td>Kennicutt</td>
<td>Chuck</td>
<td>mckennicutt@gmail.com</td>
<td>Co-Chair/oceanography/environmental chemistry</td>
</tr>
<tr>
<td>Kim</td>
<td>Yeadong</td>
<td>ybkim@kopri.re.kr</td>
<td>Co-Chair/geophysics/MNAP</td>
</tr>
<tr>
<td>Klepikov</td>
<td>Alexander</td>
<td>klep@ari.ru</td>
<td>Oceanography/climate</td>
</tr>
<tr>
<td>Lee</td>
<td>Joo Han</td>
<td>joohan@kopri.re.kr</td>
<td>Oceanography/logistics</td>
</tr>
<tr>
<td>Leppe</td>
<td>Marcelo</td>
<td>mleppe@lnach.cl</td>
<td>Botany</td>
</tr>
<tr>
<td>Liggett</td>
<td>Daniela</td>
<td>daniela.liggett@canterbury.ac.nz</td>
<td>Environmental management/tourism/education</td>
</tr>
<tr>
<td>Lopez-Martinez</td>
<td>Jeronimo</td>
<td>jeronimo.lopez@uam.es</td>
<td>Geology/geomorphology/SCAR President</td>
</tr>
<tr>
<td>McDonald</td>
<td>Adrian</td>
<td>adrian.mcdonald@canterbury.ac.nz</td>
<td>Atmospheric science/remote sensing</td>
</tr>
<tr>
<td>Nixdorf</td>
<td>Uwe</td>
<td>uwe.nixdorf@awi.de</td>
<td>Infrastructure/operations</td>
</tr>
<tr>
<td>Ojeda</td>
<td>Miki</td>
<td>maojeda@cmima.csic.es; maojeda@utn.csic.es</td>
<td>Ships</td>
</tr>
<tr>
<td>Shije</td>
<td>Xu</td>
<td>xushije@ca.gov.cn</td>
<td>Planning/operations</td>
</tr>
<tr>
<td>Shin</td>
<td>Hyoung Chul</td>
<td>hcsbin@kopri.re.kr</td>
<td>Ecology/marine biology/science support</td>
</tr>
<tr>
<td>Shiraishi</td>
<td>Kazuyuki</td>
<td>kshiraishi@nicp.ac.jp</td>
<td>Geology/MNAP/COMNAP Chair</td>
</tr>
<tr>
<td>Siegert</td>
<td>Martin</td>
<td>m.siegert@imperial.ac.uk</td>
<td>Glaciology/geology</td>
</tr>
<tr>
<td>Stocking</td>
<td>Tim</td>
<td>timtoc@bas.ac.uk</td>
<td>Operations</td>
</tr>
<tr>
<td>Stone</td>
<td>Brian</td>
<td>bstone@nsf.gov</td>
<td>Logistics/air</td>
</tr>
<tr>
<td>Stone</td>
<td>Bill</td>
<td>billstone@stone.aerospace.com</td>
<td>Technology/ROVs/AUVs</td>
</tr>
<tr>
<td>Vaughan</td>
<td>David</td>
<td>dgy@bas.ac.uk</td>
<td>Glaciology/climate/sea level</td>
</tr>
<tr>
<td>Wahlin</td>
<td>Anna</td>
<td>anna.wahlin@gv.gu.se; anna.wahlin@gu.se</td>
<td>Oceanography</td>
</tr>
<tr>
<td>Wilson</td>
<td>Gary</td>
<td>gary.wilson@nzari.aq</td>
<td>Marine geology/paleoclimatology/paleoceanography</td>
</tr>
<tr>
<td>Wilson</td>
<td>Terry</td>
<td>twilson@mps.ohio-state.edu</td>
<td>Tectonics/Geology</td>
</tr>
<tr>
<td>Winther</td>
<td>Jan-Gunnar</td>
<td>winther@npolar.no</td>
<td>Glaciology/hydrology/snow</td>
</tr>
<tr>
<td>Wooding</td>
<td>Rob</td>
<td>rob.wooding@aad.gov.au</td>
<td>Support and operations</td>
</tr>
<tr>
<td>Yang</td>
<td>Huigen</td>
<td>huigen_yang@pric.org.cn</td>
<td>Space and atmospheric physics, MNAP</td>
</tr>
</tbody>
</table>

MNAP - Manager of National Antarctic Program
italics - to be confirmed
Schedule for the COMNAP ARC Workshop

23-25 August 2015, Tromso Norway

Day 1 - Sunday 23 August 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
<th>Goal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 PM - 1:10 PM</td>
<td>Welcome</td>
<td>Introductions and house-keeping</td>
<td>Co-Chairs of ARC Project - MC Kennicutt II and YD Kim; M Rogan-Finnemore</td>
</tr>
<tr>
<td>1:10 PM - 1:25 PM</td>
<td>Introductory Remarks</td>
<td>The Future of Antarctic Science, Management and Support</td>
<td>K Sharaishi, Chair of COMNAP</td>
</tr>
<tr>
<td>1:25 PM - 1:55 PM</td>
<td>Keynote - Science Perspective</td>
<td>What will Antarctic science look like in 20 years?</td>
<td>Tentative - Bill Stone (if unable to attend, time will be assigned to other Day 1 activities)</td>
</tr>
<tr>
<td>1:55 PM - 2:30 PM</td>
<td>Keynote - National Antarctic Programs Perspective</td>
<td>What will National Antarctic Programs look like in 20 years?</td>
<td>Jan-Gunnar Winther</td>
</tr>
<tr>
<td>2:30 PM - 3:00 PM</td>
<td>Charge to the workshop</td>
<td>Explain the process and goals, assignment of writing group members and leads</td>
<td>MC Kennicutt II</td>
</tr>
<tr>
<td>3:00 PM - 3:30 PM</td>
<td>Coffee Break</td>
<td>Informal discussions</td>
<td></td>
</tr>
<tr>
<td>3:30 PM - 6:00 PM</td>
<td>Writing Group A-E</td>
<td>Discussions of Goal 1 - Science Objectives and Goal 2 - Technologies</td>
<td>Leads to discuss how the groups will accomplish their work and begin discussions</td>
</tr>
<tr>
<td>6:00 PM - 7:00 PM</td>
<td>Icebreaker/Light food</td>
<td>Informal discussions</td>
<td>Dinner on your own</td>
</tr>
</tbody>
</table>

After hours - Co-Chairs and leads continue discussions and complete writing assignments as needed

Goals

1. Science objectives
2. Technologies
3. Access, infrastructure and logistics
4. Summary and Conclusions
5. Synthesis across Horizon Scan clusters

Clusters

A. Antarctic atmosphere and global connections
B. Southern Ocean and sea ice in a warming world
C. Antarctic ice sheet and sea level
D. Dynamic Earth – probing beneath Antarctic ice
E. Antarctic life on the precipice
F. Near-Earth space and beyond – eyes on the sky
G. Human presence in Antarctica
Schedule for the COMNAP ARC Workshop
23-25 August 2015, Tromso Norway
Day 2 - Monday 24 August 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
<th>Goal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 AM - 9:00 AM</td>
<td>Assemble in Plenary</td>
<td>Answer questions, address concerns, gauge progress</td>
<td>Co-Chairs of ARC Project - MC Kennicutt II/ YD Kim</td>
</tr>
<tr>
<td>9:00 AM-10:30 AM</td>
<td>Writing Groups A-E</td>
<td>Conclude Goals 1 and 2 discussions, begin Goal 3 - Access discussions</td>
<td></td>
</tr>
<tr>
<td>10:30 AM - 11:00 AM</td>
<td>Coffee Break</td>
<td>Informal discussions</td>
<td></td>
</tr>
<tr>
<td>11:00 AM - 12:30 PM</td>
<td>Writing groups A-E</td>
<td>Continue discussions of Goal 3 - Infrastructure and logistics</td>
<td></td>
</tr>
<tr>
<td>12:30 PM - 2:00 PM</td>
<td>Lunch</td>
<td>Informal discussions</td>
<td>Provided onsite</td>
</tr>
<tr>
<td>2:00 PM - 2:30 PM</td>
<td>Joint group meetings to compare notes</td>
<td>Compare and contrast results, discuss cross-cutting questions</td>
<td>Group A meets with Group B; Group C meets with group D; Group E decides how to handle Group G input</td>
</tr>
<tr>
<td>2:30 PM - 3:00 PM</td>
<td>Joint group meetings to compare notes</td>
<td>Compare and contrast results, discuss cross-cutting questions</td>
<td>Group A meets with Group C; Group B meets with Group E; Group D decides how to handle Group F input</td>
</tr>
<tr>
<td>3:00 PM - 3:30 PM</td>
<td>Joint group meetings to compare notes</td>
<td>Compare and contrast results, discuss cross-cutting questions</td>
<td>Group A meets with Group D; Groups B, C and E meet</td>
</tr>
<tr>
<td>3:30 PM - 4:00 PM</td>
<td>Coffee Break</td>
<td>Informal discussions</td>
<td></td>
</tr>
<tr>
<td>4:00 PM - 5:30 PM</td>
<td>Writing Group A-E re-assemble</td>
<td>Discuss joint meetings and conclude Goal 3 and Goal 4 Summary and Conclusions</td>
<td></td>
</tr>
<tr>
<td>5:30 PM - 6:00 PM</td>
<td>Meet in plenary</td>
<td>Brief Group lead reports (5 minutes each)</td>
<td>Highlight commonalities and cross-cutting issues. Discuss next steps and answer</td>
</tr>
<tr>
<td>8:00 PM - ???</td>
<td>Workshop Dinner</td>
<td>Informal discussions</td>
<td></td>
</tr>
</tbody>
</table>

After hours - Co-Chairs and leads continue discussions and complete writing assignments as needed

Goals

1. **Science Objectives**
 - A. Antarctic atmosphere and global connections
 - B. Southern Ocean and sea ice in a warming world
 - C. Antarctic ice sheet and sea level
 - D. Dynamic Earth – probing beneath Antarctic ice
 - E. Antarctic life on the precipice
 - F. Near-Earth space and beyond – eyes on the sky
 - G. Human presence in Antarctica

2. **Technologies**

3. **Access, infrastructure and logistics**

4. **Summary and Conclusions**

5. **Synthesis across Horizon Scan clusters**
Schedule for the COMNAP ARC Workshop

23-25 August 2015, Tromso Norway

Day 3 - Wednesday 25 August 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
<th>Goal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 AM - 9:00 AM</td>
<td>Assemble in Plenary</td>
<td>Answer questions, address concerns, gauge progress</td>
<td>Co-Chairs of ARC Project - MC Kennicutt II/ YD Kim</td>
</tr>
<tr>
<td>9:00 AM-10:30 AM</td>
<td>Writing Groups A-E</td>
<td>Conclude Goals 1-3 and Goal 4 Summaries</td>
<td></td>
</tr>
<tr>
<td>10:30 AM - 11:00 AM</td>
<td>Coffee Break</td>
<td>Informal discussions</td>
<td>Coffee break dependent on progress</td>
</tr>
<tr>
<td>11:00 AM - 12:00 PM</td>
<td>Meet in Plenary - Reports by leads (7-8 minutes each)</td>
<td>Discuss synthesis across Horizon Scan clusters (20 minutes)</td>
<td>Open discussions</td>
</tr>
<tr>
<td>12:00 PM - 12:15 PM</td>
<td>Next Steps/Concluding Remarks</td>
<td>Outline progress, remaining tasks, assignment of responsibilities and deadlines</td>
<td>Co-Chairs of ARC Project - MC Kennicutt II/ YD Kim; Adjourn before SCAR/COMNAP Joint Ex Com meeting</td>
</tr>
</tbody>
</table>

After workshop close - Co-Chairs and leads continue discussions and complete writing assignments as needed

Goals

1. Science objectives
2. Technologies
3. Access, infrastructure and logistics
4. Summary and Conclusions

Clusters

- **A. Antarctic atmosphere and global connections**
- **B. Southern Ocean and sea ice in a warming world**
- **C. Antarctic ice sheet and sea level**
- **D. Dynamic Earth – probing beneath Antarctic ice**
- **E. Antarctic life on the precipice**
- **F. Near-Earth space and beyond – eyes on the sky**
The 1st SCAR Antarctic and Southern Ocean Science Horizon Scan
Final List of Questions

ANTARCTIC ATMOSPHERE AND GLOBAL CONNECTIONS1,2,3

1. How is climate change and variability in the high southern latitudes connected to lower latitudes including the Tropical Ocean and monsoon systems?
2. How do Antarctic processes affect mid-latitude weather and extreme events?
3. How have teleconnections, feedbacks, and thresholds in decadal and longer term climate variability affected ice sheet response since the Last Glacial Maximum, and how can this inform future climate projections?
4. What drives change in the strength and position of Westerly winds, and what are their effects on ocean circulation, carbon uptake and global teleconnections?
5. How did the climate and atmospheric composition vary prior to the oldest ice records?
6. What controls regional patterns of atmospheric and oceanic warming and cooling in the Antarctic and Southern Ocean? (Cross-cuts “Southern Ocean”)
7. How can coupling and feedbacks between the atmosphere and the surface (land ice, sea ice and ocean) be better represented in weather and climate models? (Cross-cuts “Southern Ocean” and “Antarctic Ice Sheet”)
8. Does past amplified warming of Antarctica provide insight into the effects of future warming on climate and ice sheets? (Cross-cuts “Antarctic Ice Sheet”)
9. Are there CO2 equivalent thresholds that foretell collapse of all or part of the Antarctic Ice Sheet? (Cross-cuts “Antarctic Ice Sheet”)
10. Will there be release of greenhouse gases stored in Antarctic and Southern Ocean clathrates, sediments, soils, and permafrost as climate changes? (Cross-cuts “Dynamic Earth”)
11. Is the recovery of the ozone hole proceeding as expected and how will its recovery affect regional and global atmospheric circulation, climate and ecosystems? (Cross-cuts “Antarctic Life” and “Human”)

SOUTHERN OCEAN AND SEA ICE IN A WARMING WORLD1,2

12. Will changes in the Southern Ocean result in feedbacks that accelerate or slow the pace of climate change?
13. Why are the properties and volume of Antarctic Bottom Water changing, and what are the consequences for global ocean circulation and climate?
14. How does Southern Ocean circulation, including exchange with lower latitudes, respond to climate forcing?
15. What processes and feedbacks drive changes in the mass, properties and distribution of Antarctic sea ice?
16. How do changes in iceberg numbers and size distribution affect Antarctica and the Southern Ocean?
17. How has Antarctic sea ice extent and volume varied over decadal to millennial time scales?
18. How will changes in ocean surface waves influence Antarctic sea ice and floating glacial ice?
19. How do changes in sea ice extent, seasonality and properties affect Antarctic atmospheric and oceanic circulation? (Cross-cuts “Antarctic Atmosphere”)
20. How do extreme events affect the Antarctic cryosphere and Southern Ocean? (Cross-cuts “Antarctic Ice Sheet”)
21. How did the Antarctic cryosphere and the Southern Ocean contribute to glacial-interglacial cycles? (Cross-cuts “Antarctic Ice Sheet”)
22. How will climate change affect the physical and biological uptake of CO2 by the Southern Ocean? (Cross-cuts “Antarctic Life”)
23. How will changes in freshwater inputs affect ocean circulation and ecosystem processes? (Cross-cuts “Antarctic Life”)

ANTARCTIC ICE SHEET AND SEA LEVEL1,2

24. How does small-scale morphology in subglacial and continental shelf bathymetry affect Antarctic Ice Sheet response to changing environmental conditions? (Cross-cuts “Dynamic Earth”)
25. What are the processes and properties that control the form and flow of the Antarctic Ice Sheet?

1 Questions are assigned numbers for ease of referencing and do not indicate relative importance or rank-order within or between clusters.
2 Questions that cross-cut clusters are indicated in red.
26. How does subglacial hydrology affect ice sheet dynamics, and how important is it? *(Cross-cuts “Dynamic Earth”)*
27. How do the characteristics of the ice sheet bed, such as geothermal heat flux and sediment distribution, affect ice flow and ice sheet stability? *(Cross-cuts “Dynamic Earth”)*
28. What are the thresholds that lead to irreversible loss of all or part of the Antarctic ice sheet?
29. How will changes in surface melt over the ice shelves and ice sheet evolve, and what will be the impact of these changes?
30. How do oceanic processes beneath ice shelves vary in space and time, how are they modified by sea ice, and do they affect ice loss and ice sheet mass balance? *(Cross-cuts “Southern Ocean”)*
31. How will large-scale processes in the Southern Ocean and atmosphere affect the Antarctic Ice Sheet, particularly the rapid disintegration of ice shelves and ice sheet margins? *(Cross-cuts “Antarctic Atmosphere” and “Southern Ocean”)*
32. How fast has the Antarctic Ice Sheet changed in the past and what does that tell us about the future?
33. How did marine-based Antarctic ice sheets change during previous inter-glacial periods?
34. How will the sedimentary record beneath the ice sheet inform our knowledge of the presence or absence of continental ice? *(Cross-cuts “Dynamic Earth”)*

DYNAMIC EARTH - PROBING BENEATH ANTARCTIC ICE

35. How does the bedrock geology under the Antarctic Ice Sheet inform our understanding of supercontinent assembly and break-up through Earth history?
36. Do variations in geothermal heat flux in Antarctica provide a diagnostic signature of sub-ice geology?
37. What is the crust and mantle structure of Antarctica and the Southern Ocean, and how do they affect surface motions due to glacial isostatic adjustment?
38. How does volcanism affect the evolution of the Antarctic lithosphere, ice sheet dynamics, and global climate? *(Cross-cuts “Antarctic Atmosphere” and “Antarctic Ice Sheet”)*
39. What are and have been the rates of geomorphic change in different Antarctic regions, and what are the ages of preserved landscapes?
40. How do tectonics, dynamic topography, ice loading and isostatic adjustment affect the spatial pattern of sea level change on all time scales? *(Cross-cuts “Antarctic Ice Sheet”)*
41. Will increased deformation and volcanism characterize Antarctica when ice mass is reduced in a warmer world, and if so, how will glacial- and ecosystems be affected? *(Cross-cuts “Antarctic Life”)*
42. How will permafrost, the active layer and water availability in Antarctic soils and marine sediments change in a warming climate, and what are the effects on ecosystems and biogeochemical cycles? *(Cross-cuts “Antarctic Life”)*

ANTARCTIC LIFE ON THE PRECIPICE

43. What is the genomic basis of adaptation in Antarctic and Southern Ocean organisms and communities?
44. How fast are mutation rates and how extensive is gene flow in the Antarctic and the Southern Ocean?
45. How have ecosystems in the Antarctic and the Southern Ocean responded to warmer climate conditions in the past? *(Cross-cuts “Antarctic Atmosphere” and “Oceans”)*
46. How has life evolved in the Antarctic in response to dramatic events in the Earth’s history? *(Cross-cuts “Dynamic Earth”)*
48. Which ecosystems and food webs are most vulnerable in the Antarctic and Southern Ocean, and which organisms are most likely to go extinct?
49. How will threshold transitions vary over different spatial and temporal scales, and how will they impact ecosystem functioning under future environmental conditions?
50. What are the synergistic effects of multiple stressors and environmental change drivers on Antarctic and Southern Ocean biota?
51. How will organism and ecosystems respond to a changing soundscape in the Southern Ocean? *(Cross-cuts “Human”)*
52. How will next-generation contaminants affect Antarctic and Southern Ocean biota and ecosystems?
53. What is the exposure and response of Antarctic organisms and ecosystems to atmospheric contaminants (e.g. black carbon, mercury, sulphur, etc.), and are the sources and distributions of these contaminants changing? (Cross-cuts “Antarctic Atmosphere” and “Human”)

54. How will the sources and mechanisms of dispersal of propagules into and around the Antarctic and Southern Ocean change in the future?

55. How will invasive species and range shifts of indigenous species change Antarctic and Southern Ocean ecosystems? (Cross-cuts “Human”)

56. How will climate change affect the risk of spreading emerging infectious diseases in Antarctica? (Cross-cuts “Human”)

57. How will increases in the ice-free Antarctic intertidal zone impact biodiversity and the likelihood of biological invasions?

58. How will climate change affect existing and future Southern Ocean fisheries, especially krill stocks? (Cross-cuts “Human”)

59. How will linkages between marine and terrestrial systems change in the future?

60. What are the impacts of changing seasonality and transitional events on Antarctic and Southern Ocean marine ecology, biogeochemistry, and energy flow?

61. How will increased marine resource harvesting impact Southern Ocean biogeochemical cycles? (Cross-cuts “Human”)

62. How will deep sea ecosystems respond to modifications of deep water formation, and how will deep sea species interact with shallow water ecosystems as the environment changes?

63. How can changes in the form and frequency of extreme events be used to improve biological understanding and forecasting? (Cross-cuts “Antarctic Atmosphere”)

64. How can temporal and spatial “omic-level” analyses of Antarctic and Southern Ocean biodiversity inform ecological forecasting?

65. What key marine species tell us about trophic interactions and their oceanographic drivers such as future shifts in frontal dynamics and stratification?

66. How successful will Southern Ocean Marine Protected Areas be in meeting their protection objectives, and how will they affect ecosystem processes and resource extraction? (Cross-cuts “Human”)

67. What ex situ conservation measures, such as genetic repositories, are required for the Antarctic and Southern Ocean? (Cross-cuts “Human”)

68. How effective are Antarctic and Southern Ocean conservation measures for preserving evolutionary potential? (Cross-cuts “Human”)

NEAR-EARTH SPACE AND BEYOND - EYES ON THE SKY

69. What happened in the first second after the universe began?

70. What is the nature of the dark universe and how is it affecting us?

71. What are the differences in the inter-hemispheric conjugacy between the ionosphere and that in the lower, middle and upper atmospheres, and what causes those differences?

72. How does space weather influence the polar ionosphere and what are the wider implications for the global atmosphere? (Cross-cuts “Antarctic Atmosphere”)

73. How do the generation, propagation, variability and climatology of atmospheric waves affect atmospheric processes over Antarctica and the Southern Ocean? (Cross-cuts “Antarctic Atmosphere”)

HUMAN PRESENCE IN ANTARCTICA

74. How can natural and human-induced environmental changes be distinguished, and how will this knowledge affect Antarctic governance? (Cross-cuts all other Clusters)

75. What will be the impacts of large-scale, direct human modification of the Antarctic environment? (Cross-cuts “Antarctic Life”)

76. How will external pressures and changes in the geopolitical configurations of power affect Antarctic governance and science?

77. How will the use of Antarctica for peaceful purposes and science be maintained as barriers to access change?

78. How will regulatory mechanisms evolve to keep pace with Antarctic tourism?

79. What is the current and potential value of Antarctic ecosystem services?

80. How will humans, diseases and pathogens change, impact and adapt to the extreme Antarctic environment? (Cross-cuts “Antarctic Life”)
The 1st SCAR Antarctic and Southern Ocean Science Horizon Scan
Final List of Questions

The organizers of the Antarctic Science Horizon recognize the financial support that made this event possible. Major financial support was provided by the Tinker Foundation. Substantial financial support was provided by Antarctica New Zealand, The New Zealand Antarctic Research Institute, the Scientific Committee on Antarctic Research (SCAR), the Council of Managers of National Antarctic Programs, the Alfred-Wegner-Institut (Germany), and the British Antarctic Survey (United Kingdom). Support was provided by the Antarctic Climate & Ecosystems Cooperative Research Center (Australia), the Canadian Polar Commission, the Climate and Cryosphere Program, Kelly Tarlton’s Sea Life Aquarium, the Korean Polar Research Institute, the Instituto Antártico Chileno, the National Institute for Polar Research (Japan), New Zealand Post, the Programma Nazionale di Ricerche in Antartide (Italy) and the University of Malaysia. The support of the SCAR Secretariat and Antarctica New Zealand staff is gratefully recognized.
Antarctic Science Horizon Scan Methods

The 1st Scientific Committee on Antarctic Research (SCAR) Antarctic and Southern Ocean Science Horizon Scan was initiated to develop a community vision of the most important, highest priority, and most compelling scientific questions that will or should be addressed by in the next two decades. Horizon scanning is the systematic search for potential opportunities that are currently poorly recognized. Existing Horizon Scan methods were customized to the requirements of Antarctic Science Horizon Scan. The objectives of this Horizon Scan were broad community engagement and democratic and transparent decision making. The culmination of the process was a gathering of experts to prioritize questions (the Retreat). There several opportunities for community participation in the process. The Antarctic Science Horizon Scan was initiated by the Scientific Committee on Antarctic Research (SCAR) and managed by an International Steering Committee (ISC) of 25 community leaders from 14 countries.

GENERATION OF INITIAL QUESTIONS

A database of scientific questions was generated by two community-wide, on-line solicitations for interested parties to submit questions. Submitted questions were to be answerable with a realistic research design, have a factual answer not dependent on value judgments, address important gaps in knowledge, of a spatial and temporal scope that could be addressed by a researcher and/or research team, and not formulated as a general topic area. The questions were to be clearly worded, simple and concise capturing the essence of a complex idea. Question submitters were asked to think beyond what is being studied now and forecast what research should be addressed in 20 years’ time. The community was encouraged to submit their most imaginative ideas to define a vision that delivers on the promise and potential of research in and from the Antarctic. If a question could, in all likelihood, be mostly answered in the next ten years it was not appropriate. Questions could be of importance to global issues and/or grounded in curiosity-driven research that capitalizing on the unique setting of Antarctica. Questions supported by observations from Antarctica because if it’s singular characteristics not attainable elsewhere were solicited. Questions were to be of reasonable scope and not so broad that they could not be addressed in definable ways or so narrow that the outcomes would be of limited interest. The two community-wide question solicitations produced 866 questions. The questions were not edited and served as the Retreat’s starting place.

RETREAT ATTENDEES

The final list of scientific questions was developed at a Retreat of experts. Potential Retreat invitees were identified via an online, on-line call for nominations. The solicitation of nominations of generated 789 nominations of 510 individuals. From this database the ISC (automatically invited) selected those to be invited to attend the Retreat through a democratic voting process. Nominees were categorized as experts in the geosciences, life sciences, physical sciences, social sciences and humanities and policy and voting was within these categories to ensure attendees were representative of the global Antarctic community. The total number of invitees was constrained by the budget, the capacity of the Retreat venue, and the manageability of the group. The final invitees were selected to ensure balance amongst disciplinary expertise, geographic origins, gender, stage of career, and representation from SCAR partner organizations and other stakeholders. The seventy-two Retreat attendees included scientists, national program directors/managers, policy makers, decision makers, early career scientists, and students from 22 countries.

FINAL QUESTION SELECTION

As in an online survey before the Retreat, attendees were asked to vote for the top ten research questions from the Sessions they planned to attend on Day 1 of the Retreat (session attendance was by self-selection, not assignment). On Day 1, there were three 2-hour time slots each with 3 or 4 parallel topical Sessions per time slot. In each Session on Day 1 the voting outcomes from the pre-Retreat survey were reviewed; questions with no or few votes were removed (unless considered to have unrecognized merit that could be brought out by rewriting); the questions were discussed; and if necessary, b questions were reworded and/or merged if similar or related. The remaining questions were then re-ranked based on democratic voting. The questions that received the most votes were rank-ordered as “gold” (high), “silver” (medium) and “bronze” (low). Two-hundred and forty nine of 866 initial questions remained at the end of Day 1. These questions were then considered within merged sessions on the second day. On Day 2, there were two 2-hour time slots with two parallel sessions per time slot, each addressing questions merged Day 1 topical sessions. Each merged session on Day 2 followed a similar process of discussion, question removal, rewording and voting as used on Day 1. Each session on Day 2 was assigned a fixed number of possible gold, silver, and bronze questions proportionate to the number of Day 1 sessions that had been merged to maintain balance in the number of questions per topic. The goal was to winnow the total number of remaining questions to 165 by the end of Day 2. On Day 3, questions remaining from Day 2 were merged within the gold, silver and bronze categories for consideration in the final session by all attendees. The process used on Days 1 and 2 was repeated concluding with a final vote by all to rank-order questions producing eighty gold questions. The voting outcome was discussed, question wording edited, and the final list of questions was agreed. An initial clustering of the final questions into similar or related questions was conducted to provide a logical framework for the outcome. Post-Retreat the final questions were edited for consistency and clarity while maintaining the essence and meaning of the agreed draft question from the Retreat (see the Final Question List).

Six priorities for Antarctic science

Mahlon C. Kennicutt II, Steven L. Chown and colleagues outline the most pressing questions in southern polar research, and call for greater collaboration and environmental protection in the region.

Antarctica. The word conjures up images of mountains draped with glaciers, ferocious seas dotted with icebergs and iconic species found nowhere else. The continent includes about one-tenth of the planet’s land surface, nearly 90% of Earth’s ice and about 70% of its fresh water. Its encircling ocean supports Patagonian toothfish and krill fisheries, and is crucial for regulating climate and the uptake of carbon dioxide by sea water.

Antarctic scientists are unlocking the secrets of Earth’s climate, revealing lakes and mountains beneath the ice, exploring the deep sea and contemplating the origins of life and the Universe. Once seen as a desolate place frozen in time, Antarctica is now known to be experiencing relentless change. Local transformations such as the loss of ice, changes in ocean circulation and recovery of atmospheric ozone have global consequences — for climate, sea level, biodiversity and society.

In April 2014, the Scientific Committee on Antarctic Research (SCAR) convened 75 scientists and policy-makers from 22 countries to agree on the priorities for Antarctic research for the next two decades and beyond. This is the first time that the international Antarctic community has formulated a collective vision, through discussions, debate and voting. The SCAR Antarctic and Southern Ocean Science Horizon Scan narrowed a list of hundreds of scientific questions to the 80 most pressing ones (see Supplementary Information; go.nature.com/iilhsa). A full report will be published in August.
Here we summarize the overarching scientific themes, and outline steps that researchers and governments must take to make this vision a reality. Securing funding, as well as access to and protection for the region, will make greater international collaboration a necessity.

SIX SCIENTIFIC PRIORITIES

The questions identified fall broadly into six themes. To realize the full potential of Antarctic science we need to do the following.

Define the global reach of the Antarctic atmosphere and Southern Ocean. Changes in Antarctic’s atmosphere alter the planet’s energy budgets, temperature gradients, and air chemistry and circulation. Too little is known about the underlying processes. How do interactions between the atmosphere, ocean and ice control the rate of climate change? How does climate change at the pole influence tropical oceans and monsoons? How will the recovering ozone hole and rising greenhouse-gas concentrations affect regional and global atmospheric circulation and climate?

The Southern Ocean has important roles in the Earth system. It connects the world’s oceans to form a global system of currents that transfer heat and CO₂ from the atmosphere to the deep ocean. Nutrients carried north support the base of the ocean’s food web. The ocean is becoming more acidic as CO₂ dissolves in sea water, and cold southern waters will be the first to exhibit impacts. How will climate change alter the ocean’s ability to absorb heat and CO₂ and to support ocean productivity? Will changes in the Southern Ocean result in feedbacks that accelerate or slow the pace of climate change? Why have the deepest waters of the Southern Ocean become warmer and fresher in the past four decades?

Sea ice reflects and filters sunlight. It modulates how heat, momentum and gases exchange between the ocean and atmosphere. Sea-ice formation and melt dictate the salt content of surface waters, affecting their density and freezing point. What factors control Antarctic sea-ice seasonality, distribution and volume? We need to know.

Understand how, where and why ice sheets lose mass. The Antarctic ice sheet contains about 26.5 million cubic kilometres of ice, enough to raise global sea levels by 60 metres if it returned to the ocean. Having been stable for several thousand years, the Antarctic ice sheet is now losing ice at an accelerating pace⁶⁻⁷. What controls this rate and the effect on sea level? Are there thresholds in atmospheric CO₂ concentrations beyond which ice sheets collapse and the seas rise dramatically? How do effects at the base of the ice sheet influence its flow, form and response to warming? Water bodies beneath the thick ice sheet have barely been sampled, and their effect on ice flow is unknown.

“Maximizing scientific return while minimizing the human footprint should be the goal.”

Reveal Antarctica’s history. Glimpses of the past from rock records collected around the continent’s margins suggest that Antarctica might look markedly different in a warmer world. But rocks from the heart of the continent and the surrounding oceans have been only sparsely probed. Responses of the crust to, and the effects of volcanism and heat from Earth’s interior on, overlying ice are largely undescribed. We know little about the structure of the Antarctic crust and mantle and how it influenced the creation and break-up of super-continents. Ancient landscapes beneath ice reveal the history of interactions between ice and the solid Earth. Geological signatures of past relative sea level will show when and where planetary ice has been gained or lost. We need more ice, rock and sediment records to know whether past climate states are fated to be repeated.

Learn how Antarctic life evolved and survived. Antarctic ecosystems were long thought of as young, simple, species-poor and isolated. In the past decade a different picture has emerged. Some taxa, such as marine worms (polychaetes) and crustaceans (isopods and amphipods) are highly diverse, and connections between species on the continent, neighbouring islands and the deep sea are greater than thought. Molecular studies reveal that nematodes, mites, midges and freshwater crustaceans survived past glaciations.

To forecast responses to environmental change we need to learn how past events have driven diversifications and extinctions. What are the genomic, molecular and cellular bases of adaptation? How do rates of evolution in the Antarctic compare with elsewhere? Are there irreversible environmental thresholds? And which species respond first?

Observe space and the Universe. The dry, cold and stable Antarctic atmosphere creates some of the best conditions on Earth for observing space. Lakes beneath Antarctic glaciers mimic conditions on Jupiter and Saturn’s icy moons, and meteorites collected on the continent reveal how the Solar System formed and inform astrobiology.

We have limited understanding of high-energy particles from solar flares that are funnelled to the poles along the Earth’s magnetic field lines. What is the risk of solar events disrupting global communications and power systems? Can we prepare for them and are they predictable?

Recognize and mitigate human influences. Forecasts of human activities and their impacts on the region are required for effective Antarctic governance and regulation. Natural and human impacts must be disentangled. How effective are current regulations in controlling access? How do global policies affect people’s motivations to visit the region? How will humans and pathogens affect and adapt to Antarctic environments? What is the current and potential value of Antarctic ecosystem services and how can they be preserved?

CHALLENGING ENVIRONMENT

Answering these many questions will require sustained and stable funding; access to all of Antarctica throughout the year; application of emerging technologies; strengthened protection of the region; growth in international cooperation; and improved communication among all interested parties.

Antarctic programmes are sensitive to budget uncertainties and disruptions. In the past year, US projects were deferred, delayed or reduced in scale because of the US government shutdown in October 2013. Other national programmes suffered budget cuts stemming from the economic slowdown. High fuel prices and diversions for a major search and rescue mission hindered some. Decades-long projects are difficult to sustain given short grant cycles.

Access to locations needed for science is limiting. Much of the continent and the Southern Ocean remain unexplored, and most scientists visit for only a few months each year. Researchers will need to develop autonomous vehicles and observatories that can reach remote locations such as beneath ice shelves, the deep sea and under ice sheets. Miniaturized sensors deployable on floats, animals and ice tethers must be able to acquire or transmit data for months or years.

A wider range of satellite-borne sensors is needed to continuously observe the entire region. Expanded aircraft-based geophysical surveys are needed to access the continental interior and ice margins. Advanced biogeochemical and biological sensors will be crucial for establishing regional patterns. Databases and repositories that can handle vast quantities of genomic and biodiversity information will be essential.

Future data sets will require high-speed and high-volume communications over great distances. Reliable sources of energy to power
remote observatories and better ways to store and uplink data will be needed. Improved computer models are essential for portraying the highly interconnected Antarctic and Earth system if we are to improve forecasts. Antarctica’s environmental-protection measures must be strengthened3,4. More scientists will need to visit, and tourist numbers have almost tripled in the past decade to more than 34,000 a year plus support personnel. This growth increases the risk of introducing non-indigenous species and the likelihood of fuel spills that we are ill-equipped to respond to effectively3,5.

The Antarctic Treaty System, which is responsible for governance of the region, is being tested by mounting environmental pressures and economic interests6,7. The establishment of marine protected areas, international regulation of tourism, assessing financial penalties for environmental damage and regulating bioprospecting have proved difficult to resolve. An integrated strategy for Antarctic environmental management is essential4.

Antarctica is seen as a place to assert national interests8. In the past decade, countries including Belgium, China, the Czech Republic, India and South Korea have established new stations; Germany, the United Kingdom, the United States and others have replaced ageing ones; and Japan, South Korea and South Africa have built or replaced ice-capable ships.

Yet scientists from many other nations lack access to Antarctica. Twenty-nine countries participate in decision-making and another twenty-one have agreed to abide by the Antarctic Treaty. Although this represents about two-thirds of the world population, it comprises less than one-sixth of the 193 member states of the United Nations — countries in Africa and the Middle East are notably under-represented.

WORK TOGETHER

Maximizing scientific return while minimizing the human footprint should be the goal. Coordinated international efforts that engage diverse stakeholders will be crucial. It is time for nations involved in southern polar research to embrace a renewed spirit of cooperation as espoused by the founders of the Antarctic Treaty — in actions not just words. Wider international partnerships, more coordination of science and infrastructure funding and expanded knowledge-sharing are essential.

As an interdisciplinary scientific body, but not a funder of research, SCAR should assist with and encourage coordination and planning of joint projects, sharing of data and dissemination of knowledge to policymakers and the public. SCAR should repeat the Horizon Scan exercise every four to six years and provide the outcomes to emerging integrated science, conservation and policy efforts24 (see www.environments.aq).

We urge the Antarctic Treaty and its Committee for Environmental Protection to expand use of scientific evidence in its decision-making and to apply state-of-the-art conservation measures judged on measurable outcomes7.

Communicating the global importance of Antarctica to the public is a priority9. Narratives must better explain how the region affects and is influenced by our daily lives. Antarctic success stories, such as signs of ozone recovery, engender confidence in the power of changes in behaviour.

Antarctic science is globally important. The southern polar community must act together if it is to address some of the most pressing issues facing society. ■

Mahlon C. Kennicutt II is professor emeritus of oceanography at Texas A&M University, College Station, Texas, USA, and former president of the Scientific Committee on Antarctic Research. Steven L. Chown is professor of biological sciences at Monash University, Victoria, Australia. John J. Cassano, Daniela Liggett, Rob Massom, Lloyd S. Peck, Steve R. Rintoul, John W. V. Storey, David G. Vaughan, Terry J. Wilson, William J. Sutherland, and Mahlon C. Kennicutt II are authors. E-mail: mckennicutt@gmail.com

On behalf of attendees at the 1st SCAR Antarctic and Southern Ocean Science Horizon Scan Retreat, 20–23 April 2014, Queenstown, New Zealand. See go.nature.com/iilhsa for a full list of co-signatories.
A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond

mckennicutt@gmail.com

Abstract: Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to 'scan the horizon' to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.

Received 6 July 2014, accepted 11 August 2014, first published online 18 September 2014

Key words: extraordinary logistics, future directions, horizon scan, research priorities, Scientific Committee on Antarctic Research, technological challenges

Introduction

Priority setting exercises are often used to support the achievement of societal goals through a structured identification of critical needs for scientific knowledge and information (Sutherland et al. 2011, Cook et al. 2013a). A clear science agenda, tied explicitly to information needs, is generally welcomed by policy makers and by those faced with difficult choices within a context of finite resources. Researchers likewise find the identification of broad themes and key knowledge gaps helpful for identifying future research areas, potential applications of their work and critical areas in need of knowledge synthesis. Science priority setting is particularly important in the Antarctic given the substantial costs and challenges of conducting research in the region. Although various Antarctic organizations routinely undertake priority setting exercises, often formulated as national strategic or organizational plans, these are short term, and frequently focus on the specific needs and capabilities of an individual entity. To date, comprehensive, long-term
international priority setting for science in the Antarctic and Southern Ocean has been lacking, with one notable exception being the recent International Polar Year 2007–2008 (on a 30 to 50 year cycle). Therefore, the goal of the 1st Scientific Committee on Antarctic Research (SCAR) Antarctic and Southern Ocean Science Horizon Scan (hereafter ‘scan’) was to establish a process that could be routinely used to identify the most important, highest priority scientific questions that Antarctic science should aspire to answer. In this first scan, the timeframe was the next two decades and beyond. Here we outline the scan process and report its outcomes.

Methods

A horizon scan is a priority setting method that systematically searches for opportunities, which are then used to articulate a vision for future research directions (Sutherland & Woodroof 2009). The scan methods of Sutherland et al. (2011, 2013) were customized to the requirements of Antarctic and Southern Ocean science, which is region-based, includes a wide range of scientific disciplines and research topics, and involves fieldwork in challenging and remote locations. The scan process was designed to be inclusive and transparent. The final list of questions was agreed at a face-to-face gathering (hereafter ‘Retreat’) held in Queenstown, New Zealand from 20–23 April 2014. There were opportunities to contribute scientific questions and to nominate experts to attend the Retreat. A web site was established which served as a resource and a record of the scan (http://www.scar.org/horizonscan/). Retreat invitee selection, pre-Retreat rating of questions and voting were administered using Qualtrics (www.qualtrics.com).

Selection of Retreat attendees

An International Steering Committee (ISC) of 25 members from 14 countries, appointed by SCAR (http://www.scar.org/horizonscan/isc), selected invitees to the Retreat. Candidates for an invitation were identified through an open, online nomination process. The process generated 789 nominations of 510 individuals. Nominees were classified as experts in one of five categories: i) geosciences, ii) life sciences, iii) physical sciences, iv) social sciences and humanities, and v) policy making. Voting was conducted within categories to ensure broad representation. On the ballot, each nominee had a short resume and a link to a homepage if available. Two rounds of voting by the ISC were conducted. In the first round the top 10% of vote receivers were moved to a short list and those receiving two or fewer votes were no longer considered. The remaining nominees were voted on a second time and the top 10% vote receivers were added to the short list bringing it to 115 nominees for the 50 available ‘at-large invitations’. ISC members were also extended an invitation to the Retreat for a total of 75 attendees.

The total number of Retreat invitees was constrained by the manageability of the group and the budget. From the short list of nominees, the final invitees were selected to ensure balance amongst disciplinary expertise, geographical origins, gender, stage of career, and representation of SCAR partner organizations and other stakeholders. Retreat invitees were from 22 countries and included scientists, national programme directors/managers, policy makers, and early-career scientists (see Table S1). If an invitee was unable to attend, another invitee with similar qualifications was selected from the short list (97% of initial invitations were accepted). Retreat attendees were considered representatives of their respective communities and were asked to consult with others throughout the scan process. Retreat attendees reported substantive input from c. 700 colleagues prior to the Retreat.

Generation of initial questions

Two open, online solicitations generated an initial database of scientific questions. Submitted questions were expected to: i) be answerable by an achievable research design, ii) have a factual answer independent of value judgements, iii) address important gaps in knowledge, iv) be of a spatial and temporal scale that could be addressed by a research team, v) be specifically formulated (not a general topical area), and vi) if related to impact and interventions, contain a subject, an intervention and a measurable outcome (Sutherland et al. 2011). The questions were to be clearly-worded, simple and concise, and drafted to capture the essence of a complex idea. Questions best addressed by research in the southern polar regions or where studies in the Antarctic provide insights unobtainable elsewhere were encouraged. Questions could be important to global issues and/or grounded in curiosity-driven research. Question submitters were asked to think beyond what is being studied today and predict the research needed in the next two decades and beyond, which, when answered, would deliver globally significant Antarctic science.

The initial database consisted of 866 questions: 751 from the first question solicitation and 115 from the second. Unedited questions were sorted into topical areas and some interdisciplinary questions were included under more than one topic (Table I). The database of questions was made publically available and served as the starting point for the Retreat. A pre-Retreat online survey asked attendees to select the top ten questions in the sessions they planned to attend on Day 1 of the Retreat (session attendance was by self-selection). As part of the pre-Retreat survey, attendees had an opportunity to propose additional questions to fill gaps in the coverage of the question database. Thirty-one
additional questions were added to the database by this process. In total, 955 questions were listed, including 60 placed under more than one topic. The results of the pre-Retreat voting were provided to the attendees prior to and during the Retreat.

The Retreat and final question selection

The Retreat occurred over four days and was designed to identify the key scientific questions, sufficient to describe the most important research priorities through a winnowing process of structured debate, discussion, revision and voting. The days were divided into discrete discussion sessions dealing with the questions. Each discussion session was managed by a discussion leader, an assisting discussion leader, and at least one technical assistant to record the outcomes and manage voting (Table S1). In advance of the Retreat a group of technical assistants was formed to develop and test the scan procedures. Prior to the first full day (Day 1) of the Retreat, training sessions were held on-site to ensure that the discussion leaders and technical assistants were conversant with these methods, tools and goals. At the beginning and the end of each day of the Retreat, attendees were assembled in plenary to gauge progress, answer questions and address issues that may have arisen.

The schedule for Day 1 included three 2-hour discussion sessions, each with three or four parallel sessions (Table I). In each Day 1 session, attendees: i) reviewed the voting outcomes from the pre-Retreat survey, ii) removed those questions with no or few votes (unless considered to have unrecognized merit that could be brought out by editing), iii) discussed the questions as a whole, and iv) if necessary, re-worded and/or merged similar or related questions. Once discussions ended, the remaining questions were ranked by vote into three categories as gold (most important), silver (very important) or bronze (important) (Sutherland et al. 2013). Each Day 1 session was allotted 24 total questions, eight in each of the three categories as a goal. One exception was ‘the atmosphere, near-Earth space and beyond’ session, which was allocated 11 questions per category due to the large number of initial questions. Questions that received the same number of votes equal to the lowest number of votes for retention were ranked by vote to the next level of importance. This process eliminated 74% of the initial questions leaving 249 questions for consideration on Day 2.

Day 2 of the Retreat included two 2-hour discussion sessions, each with two parallel, merged sessions (see Table I for the Day 1 sessions that were merged). A process similar to that used on Day 1 was repeated (pre-Retreat results were no longer relevant). To maintain balance amongst topics, each Day 2 session was allotted a
target number of questions in the gold, silver and bronze categories proportionate to the number of combined Day 1 sessions (Table I). ‘The Southern Ocean’ and ‘Predicting future change’ sessions were allocated 24 questions per category and ‘Land ice and terrestrial life’ and ‘Earth, atmosphere and space’ were allocated 16 and 19 questions per category, respectively. In each session, the combined gold questions from Day 1 were examined to identify related or similar questions from the merged sessions and some, based on closer scrutiny and discussion, were either combined into a single question and retained in the gold category or re-classified as silver. The bronze questions were examined to identify ones that, with editing, might rise to the silver category. The decision to move questions from the bronze to the silver category was by vote. Questions in the silver category were then ranked by a vote to complete the allocation of gold questions. The remaining questions were categorized as silver or bronze based on the vote and the number of questions allotted to each category. This process eliminated 35% of the remaining Day 1 questions leaving a total of 162 questions for further consideration on Day 3.

On Day 3, the questions remaining from the Day 2 sessions were merged within the gold, silver and bronze categories for final consideration by all Retreat attendees in a single discussion session (Table I). The combined gold questions were examined to identify related or similar questions from the merged sessions and some, based on closer scrutiny and discussion, were either combined into a single question and retained in the gold category or re-classified as silver. The bronze questions were examined to identify ones that, with editing, might rise to the silver category. The decision to move questions from the bronze to silver category was decided by vote. Questions in the silver category were then ranked by the same voting procedure used on Day 2 to complete the allocation of gold questions, which was decided by vote to be 80. This process eliminated 51% of the remaining Day 2 questions (Table I). The voting outcome was discussed, questions were edited where required, the final list of questions was agreed and the questions were clustered within a framework of topics (Table I).

Question clusters and summaries

Post-Retreat, the final questions were further edited for consistency and clarity, but the essence of the question was unchanged. Cluster titles were refined to better communicate the overarching themes (Table I). Questions were assigned consecutive numbers for ease of referencing but these numbers do not indicate relative importance or rank within or between clusters. Initial assignments of questions to clusters were re-examined to assess the logic of the sorting and compatibility with mainstream scientific classification schemes. In this process, it was recognized that some questions could be assigned to more than one cluster reflective of the cross-disciplinary nature of Antarctic and Southern Ocean science. Questions were assigned to the cluster most closely aligned with the primary focus and annotated as ‘cross-cuts’ with one or more of the other clusters.

Once the sorting of questions and naming of the clusters was agreed, cluster summaries were written in consultation with Retreat attendees via email. Summaries were in a standard format of a 500-word narrative describing the overarching theme and how questions were inter-related, a list of questions in the cluster and cross-cutting ones with notes explaining the significance of each question, and consideration of technological challenges and extraordinary logistical requirements to be addressed to answer the questions. All cross-cutting questions were listed in, and considered to be part of, the cluster summary. The summaries will be the basis for launching public forums to continue discussions of the scan outcomes, such as Wikis.

Results

The study of Antarctica and the Southern Ocean, and their roles in the Earth and climate system, provides critical insights into natural variability, the processes that govern global-scale change, and the influence of human activities on environmental change. The scan identified a wide range of high priority questions that, once answered, will substantially advance our understanding of: i) the Antarctic atmosphere, ocean, ice, the solid Earth and its living systems, ii) the interactions within and between Antarctic and global processes, iii) critical couplings, feedbacks and thresholds that modulate and regulate these interactions, iv) how Earth’s polar regions have driven and responded to ongoing and past change, v) the relationships between ecological and evolutionary processes and their roles in structuring biodiversity and ecosystem service delivery, vi) the origins of the universe and life, vii) how the presence of humans in the region is changing and diversifying, and the ramifications of these changes for Antarctic governance regimes. These advances in understanding will also improve the reliability of integrated, predictive models over a range of spatial and temporal scales. The following sections describe the major themes identified by the scan and the 80 high priority questions (the Q.X notation refers to the horizon scan final question list presented in Tables II–V; a complete list is provided in Table S2).

Antarctic atmosphere and global connections (Table II)

Changes in Antarctica’s atmosphere have the potential to alter the planetary energy budget, modulate the pole-to-equator temperature gradient, modify the chemical composition of the atmosphere, and regulate large-scale
variability in atmospheric circulation. The atmosphere also moderates energy and mass transfers between the ocean, sea ice, land and biota in the southern polar region and elsewhere. Two-way interactions between the Antarctic and lower latitude atmosphere have the potential to influence global weather patterns and climate, with forcing from lower latitudes on Antarctic climate already being well documented (e.g. Ding et al. 2011, Bromwich et al. 2013, Li et al. 2014).

The processes that connect the Antarctic atmosphere to the mid- and lower latitudes remain largely undescribed. For example, the influence of climate change and variability at high southern latitudes on lower latitude phenomena in the tropical ocean and the monsoon system need better definition (Q.1). How changes and variability in Antarctica’s climate might be expected to affect the frequency and intensity of extreme events, in Antarctica and beyond, is also unclear (Q.2). Better definition of present-day controls on the strength of circumpolar westerly winds and regional warming will clarify how continued warming will impact oceanic CO₂-uptake and overturning circulation (Q.4 and Q.6) (Meredith et al. 2012). Coupling and feedbacks at interfaces between the atmosphere and land ice, sea ice and the ocean need to be more accurately portrayed in weather and climate models (Q.7). On local scales this atmosphere–surface coupling is influenced by clouds and radiatively active gases, and turbulent fluxes, driven by boundary layer processes. Changes in the surface state, such as changing sea surface temperature, sea ice extent, seasonality, concentration, and thickness or melting of snow and ice surfaces also modulate this exchange. On larger scales, surface coupling is influenced by atmospheric teleconnections and large-scale changes in sea ice and ocean state. It is unclear whether greenhouse gas reservoirs in southern polar clathrates, sediments, soils and permafrost will be released as the region warms and how this release might feedback to the climate system (Q.10).

Atmospheric waves are widespread and have the potential to impact atmospheric dynamics, atmospheric chemistry

Table II. Antarctic and Southern Ocean Science Horizon Scan questions in clusters ‘Antarctic atmosphere and global connections’ and ‘Southern Ocean and sea ice in a warming world’.

<table>
<thead>
<tr>
<th>Antarctic atmosphere and global connections</th>
<th>Southern Ocean and sea ice in a warming world</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How is climate change and variability in the high southern latitudes connected to lower latitudes including the tropical ocean and monsoon systems?</td>
<td>12. Will changes in the Southern Ocean result in feedbacks that accelerate or slow the pace of climate change?</td>
</tr>
<tr>
<td>2. How do Antarctic processes affect mid-latitude weather and extreme events?</td>
<td>13. Why are the properties and volume of Antarctic Bottom Water changing, and what are the consequences for global ocean circulation and climate?</td>
</tr>
<tr>
<td>3. How have teleconnections, feedbacks, and thresholds in decadal and longer term climate variability affected ice sheet response since the Last Glacial Maximum, and how can this inform future climate projections?</td>
<td>14. How does Southern Ocean circulation, including exchange with lower latitudes, respond to climate forcing?</td>
</tr>
<tr>
<td>4. What drives change in the strength and position of westerly winds, and what are their effects on ocean circulation, carbon uptake and global teleconnections?</td>
<td>15. What processes and feedbacks drive changes in the mass, properties and distribution of Antarctic sea ice?</td>
</tr>
<tr>
<td>5. How did the climate and atmospheric composition vary prior to the oldest ice records?</td>
<td>16. How do changes in iceberg numbers and size distribution affect Antarctica and the Southern Ocean?</td>
</tr>
<tr>
<td>6. What controls regional patterns of atmospheric and oceanic warming and cooling in the Antarctic and Southern Ocean? (Cross-cuts ‘Southern Ocean’)</td>
<td>17. How has Antarctic sea ice extent and volume varied over decadal to millennial timescales?</td>
</tr>
<tr>
<td>7. How can coupling and feedbacks between the atmosphere and the surface (land ice, sea ice and ocean) be better represented in weather and climate models? (Cross-cuts ‘Southern Ocean’ and ‘Antarctic ice sheet’)</td>
<td>18. How will changes in ocean surface waves influence Antarctic sea ice and floating glacial ice?</td>
</tr>
<tr>
<td>9. Are there CO₂ equivalent thresholds that foretell collapse of all or part of the Antarctic ice sheet? (Cross-cuts ‘Antarctic ice sheet’)</td>
<td>20. How do extreme events affect the Antarctic cryosphere and Southern Ocean? (Cross-cuts ‘Antarctic ice sheet’)?</td>
</tr>
<tr>
<td>11. Is the recovery of the ozone hole proceeding as expected and how will its recovery affect regional and global atmospheric circulation, climate and ecosystems? (Cross-cuts ‘Antarctic life’ and ‘Human’)</td>
<td>22. How will climate change affect the physical and biological uptake of CO₂ by the Southern Ocean? (Cross-cuts ‘Antarctic life’)?</td>
</tr>
<tr>
<td></td>
<td>23. How will changes in freshwater inputs affect ocean circulation and ecosystem processes? (Cross-cuts ‘Antarctic life’)?</td>
</tr>
</tbody>
</table>

Questions are assigned numbers for ease of referencing and do not indicate relative importance or rank-order within or between clusters. *Questions that cross-cut clusters are indicated with red italics.*
and cloud formation. The mechanisms that lead to the generation of waves, their vertical and horizontal propagation in the atmosphere, and their impact on the state of the atmosphere require additional study (Q.73).

The effect of temporal and spatial variability in sea ice thickness and extent on atmospheric circulation is unknown (Q.19). The influence of large-scale atmospheric and oceanic processes on the melting of ice shelves and ice sheet margins is likewise ill-defined (Q.31). Clearer delineation of the relationship between atmospheric greenhouse gas concentrations and Antarctic ice sheet stability is needed if important thresholds are to be recognized (Q.9). Understanding the interplay of planetary ice and tectonic history is also important for determining the effect of altered atmospheric compositions on the Earth’s radiation budget and climate over time (Q.38).

Recent studies suggest that over the last half of the Twentieth Century the impact of ozone depletion was roughly 2–3-times larger than that associated with increasing greenhouse gases for Southern Hemisphere tropospheric circulation (Polvani et al. 2011). This raises questions about how ozone recovery and continued increases in greenhouse gases will affect regional and global atmospheric circulation and climate (Q.11). The role of space weather, its impacts on the ionosphere and connections to the global atmosphere need to be better understood to improve predictions (Q.72). How organisms and ecosystems will respond to atmospheric warming, extreme events and pollutants is also poorly understood (Q.11, Q.45, Q.53 and Q.63).

Studies of palaeoclimates will provide critical data for evaluating climate models under a range of greenhouse gas forcing scenarios. Critical knowledge gaps will be addressed by studying climate variability, teleconnections, feedbacks and thresholds since the Last Glacial Maximum, during past amplified warming of Antarctica, and climate and atmospheric composition variability in periods that pre-date ice core records (> 1 million years ago) (Q.3, Q.5 and Q.8).

Many of these atmospheric and related phenomena are only partially characterized. Observational, process and palaeoclimate studies will improve current understanding of the details of these interactions and enable better representation of Antarctic atmospheric processes in, and improve the reliability of, climate models. A clearer differentiation of natural variability and anthropogenic forcing of climate change is essential if the role of humans in influencing climate is to be confidently determined (Q.74).

Southern Ocean and sea ice in a warming world (Table II)

Southern Ocean processes influence climate and biogeochemical cycles on global scales. For example, the region south of 40°S is responsible for c. 40% of the oceanic uptake of anthropogenic CO₂ (Khattiwala et al. 2013) and has been responsible for more than 50% of the increase in ocean heat content over the past 50 years (Levitus et al. 2012). Nutrients exported from the Southern Ocean to lower latitudes support 75% of ocean primary productivity north of 30°S (Sarmiento et al. 2003). The Southern Ocean has also played a major role in glacial-inter-glacial transitions by transferring CO₂ from the deep ocean to the atmosphere (Jaccard et al. 2013). These global influences arise in large part from the uniqueness of Southern Ocean circulation patterns. The Antarctic Circumpolar Current connects the world ocean basins (Rintoul 2011), while the overturning circulation links the deep and shallow layers of the ocean (Marshall & Speer 2012). These connections establish a global-scale circulation that sets the capacity of the ocean to store heat and CO₂ affecting climate.

The seasonal formation and melt of a vast area of Antarctic sea ice strongly influences global climate and Southern Ocean ecosystems (Massom & Stammerjohn 2010). The formation of Antarctic sea ice drives ocean circulation through the production of dense, salty, cold water. The presence of sea ice alters the Earth’s albedo and modulates the exchange of heat, momentum and gases between the ocean and atmosphere. Sea ice influences water column light penetration and nutrient concentrations in the upper ocean and, hence, biological productivity. Sea ice also provides an essential habitat for a wide range of organisms (Thomas & Dieckmann 2010). The ocean and sea ice are coupled to glacial ice around the margins of Antarctica. For example, ocean heat flux (itself influenced by sea ice) drives glacial melt, while glacial meltwater, in turn, affects ocean circulation and sea ice distribution (Bintanja et al. 2013).

The fundamental role of the Southern Ocean and sea ice in the Earth system suggests that warming in the region will have global consequences. Our understanding of the drivers and impacts of Southern Ocean and sea ice change remains incomplete, limiting our ability to predict the course of future change. Growing evidence suggest that the Southern Ocean and its sea ice cover have changed in recent decades. The ocean has warmed, freshened and acidified, and fronts have migrated, altering habitats (Böning et al. 2008, Gille 2008, Sokolov & Rintoul 2009). Sea ice has contracted in some areas while expanding in others, resulting in a net increase in overall extent (Stammerjohn et al. 2012, Holland 2014). The Antarctic ice sheet has lost mass in response to the thinning of ice shelves due to increased ocean water heat flux (Pritchard et al. 2012). The sensitivity of the Southern Ocean overturning circulation to climate variability and change is not well understood (Q.14). Changes in the circulation of the Southern Ocean may result in feedbacks that accelerate or slow the pace of climate change, but the likelihood and importance of such feedbacks is largely unknown (Q.12 and Q.22). The recent changes in the properties and volume of Antarctic Bottom Water (Q.13)
Table III. Antarctic and Southern Ocean Science Horizon Scan questions in clusters ‘Antarctic ice sheet and sea level’ and ‘Dynamic earth – probing beneath Antarctic ice’.

<table>
<thead>
<tr>
<th>Antarctic ice sheet and sea level</th>
<th>Dynamic Earth – probing beneath Antarctic ice</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. How does small-scale morphology in subglacial and continental shelf bathymetry affect Antarctic ice sheet response to changing environmental conditions? (Cross-cuts ‘Dynamic Earth’)</td>
<td>35. How does the bedrock geology under the Antarctic ice sheet inform our understanding of supercontinent assembly and break-up through Earth’s history?</td>
</tr>
<tr>
<td>25. What are the processes and properties that control the form and flow of the Antarctic ice sheet?</td>
<td>36. Do variations in geothermal heat flux in Antarctica provide a diagnostic signature of sub-ice geology?</td>
</tr>
<tr>
<td>26. How does subglacial hydrology affect ice sheet dynamics, and how important is it? (Cross-cuts ‘Dynamic Earth’)</td>
<td>37. What is the crust and mantle structure of Antarctica and the Southern Ocean, and how do they affect surface motions due to glacial isostatic adjustment?</td>
</tr>
<tr>
<td>27. How do the characteristics of the ice sheet bed, such as geothermal heat flux and sediment distribution, affect ice flow and ice sheet stability? (Cross-cuts Dynamic Earth)</td>
<td>38. How does volcanism affect the evolution of the Antarctic lithosphere, ice sheet dynamics, and global climate? (Cross-cuts ‘Antarctic atmosphere’ and ‘Antarctic ice sheet’)</td>
</tr>
<tr>
<td>28. What are the thresholds that lead to irreversible loss of all or part of the Antarctic ice sheet?</td>
<td>39. What are and have been the rates of geomorphic change in different Antarctic regions, and what are the ages of preserved landscapes?</td>
</tr>
<tr>
<td>29. How will changes in surface melt over the ice shelves and ice sheet evolve, and what will be the impact of these changes?</td>
<td>40. How do tectonics, dynamic topography, ice loading and isostatic adjustment affect the spatial pattern of sea level change on all timescales? (Cross-cuts ‘Antarctic ice sheet’)</td>
</tr>
<tr>
<td>30. How do oceanic processes beneath ice shelves vary in space and time, how are they modified by sea ice, and do they affect ice loss and ice sheet mass balance? (Cross-cuts ‘Southern Ocean’)</td>
<td>41. Will increased deformation and volcanism characterize Antarctica when ice mass is reduced in a warmer world, and if so, how will glacial- and ecosystems be affected? (Cross-cuts ‘Antarctic life’)</td>
</tr>
<tr>
<td>31. How will large-scale processes in the Southern Ocean and atmosphere affect the Antarctic ice sheet, particularly the rapid disintegration of ice shelves and ice sheet margins? (Cross-cuts ‘Antarctic atmosphere’ and ‘Southern Ocean’)</td>
<td>42. How will permafrost, the active layer and water availability in Antarctic soils and marine sediments change in a warming climate, and what are the effects on ecosystems and biogeochemical cycles? (Cross-cuts ‘Antarctic life’)</td>
</tr>
<tr>
<td>32. How fast has the Antarctic ice sheet changed in the past and what does that tell us about the future?</td>
<td></td>
</tr>
<tr>
<td>33. How did marine-based Antarctic ice sheets change during previous inter-glacial periods?</td>
<td></td>
</tr>
<tr>
<td>34. How will the sedimentary record beneath the ice sheet inform our knowledge of the presence or absence of continental ice? (Cross-cuts ‘Dynamic Earth’)</td>
<td></td>
</tr>
</tbody>
</table>

Questions are assigned numbers for ease of referencing and do not indicate relative importance or rank-order within or between clusters. Questions that cross-cut clusters are indicated with red italics.

remain unexplained. Understanding of the processes controlling the mass, properties and distribution of Antarctic sea ice (Q.15 and Q.18) and its interaction with the atmosphere and ocean is inadequate to predict future conditions with confidence (Q.6, Q.7, Q.19 and Q.20).

Better knowledge of how Southern Ocean circulation and sea ice have varied in the past, on timescales from decadal to glacial cycles, will provide a perspective on the response of the system to future forcing (Q.17 and Q.21). Altered freshwater input from glacial melt, icebergs and precipitation may have widespread consequences for the atmosphere, ocean, cryosphere and associated ecosystems (Q.16 and Q.23). The influence of oceanic and atmospheric processes on floating ice shelves must be better understood to assess the future of the Antarctic ice sheet and sea level rise (Q.30 and Q.31). The responses of marine ecosystems to past (Q.45) and future changes in ocean circulation and acidification, seasonality and stratification are poorly known (Q.60 and Q.65).

Antarctic ice sheet and sea level (Table III)

The vast volume of water encased in the Antarctic ice sheet has the greatest potential on the planet to dramatically raise global sea levels. For several thousand years, an amount of snow equivalent to 6 mm of global sea level has fallen annually on the ice sheet, and a similar amount has been returned annually to the oceans through basal melting of floating ice and iceberg calving. However, an increasing imbalance in this mass budget has been observed in the past two decades, and the trend is accelerating (Joughin & Alley 2011, Rignot et al. 2011, Pritchard et al. 2012, Shepherd et al. 2012, Mouginot et al. 2014). Predictions of future ice loss are dependent on ice sheet evolution models which can only be improved by more accurate measurement of ice sheet features, and variability in time and space. The Antarctic ice sheet system is complex in its internal dynamics, and sensitivities to atmospheric and oceanic forcings.

Improved understanding of the processes and ice properties that control the form and flow of ice sheets will be critical to improve models (Q.25). Oceanic processes occurring beneath ice shelves remain largely uncharacterized (Q.30). The effects of large-scale changes in the oceanic and atmospheric forcing on ice sheet stability require better characterization (Q.31). Thresholds in forcing that lead to irreversible loss of all or part of the ice sheet need better definition (Q.28) (Joughin et al. 2014, Rignot et al. 2014).
Improving the reliability of decadal- to centennial-scale ice sheet behaviour predictions will be essential for predicting sea level rise. The observational record is short and the key processes that control Antarctic ice mass loss that are poorly understood include ice–ocean interactions, the role of surface melt, small-scale morphology in bedrock topography and coastal bathymetry, geothermal heat flux, sediment characteristics and distributions, and subglacial hydrology (Q.24, Q.26, Q.27 and Q.29). The Antarctic continent beneath the ice sheet remains largely unexplored and its properties are poorly known. A more thorough understanding of how ice sheets have responded to past climate change and how marine-based ice sheets responded during previous inter-glacial periods and past amplified warming of Antarctica will improve predictions of the response of the Antarctic ice sheet to a warming world (Q.28, Q.32 and Q.33). Sediment records beneath the ice in the interior of Antarctica will provide unique records of the presence or absence of continental ice over geologic time (Q.34).

Dynamic Earth – probing beneath Antarctic ice (Table III)

The deep-time chronicle of earth preserved in continental bedrock provides evidence of a changing plate tectonic engine, the evolution of life, and the history of planetary ice. Antarctica has played a central role in the evolution of the solid Earth and contains an ancient rock record of the assembly and dispersal of multiple supercontinents, repeated ice ages, and the global distribution of biota across space and time. Antarctica was the keystone of Gondwana and older supercontinents, but the history of its collision and rifting is yet to be fully revealed and linked with formerly neighbouring continents (Dalziel 2013, Harley et al. 2013). Continental break-up and intra-plate rifting are associated with extensive magmatism in some areas of Antarctica (Elliot & Fleming 2004, Rocchi et al. 2005, Storey et al. 2013).

Decoding the history of the geological terranes hidden beneath Antarctic ice is essential to understanding how supercontinents assemble and break apart (Q.35), and how mantle plumes may drive continental break-up (Q.38). The Antarctic deep-time fossil record, throughout the changing configurations of supercontinents, provides critical insights into biological evolution and extinction patterns in response to global events and changing palaeoclimates (Q.46) (Francis et al. 2008). In particular, Antarctic fossil assemblages demonstrate how both marine and terrestrial ecosystems from the continent and surrounding oceans responded to past warm, high-CO₂ climates in southern high latitudes (Q.45). During more recent glacial periods, the presence of refugia would have been crucial for the survival of life in Antarctica.

Solid earth processes intersect with the evolution of climate, ice sheets and life. Global evidence points to a fundamental role for extensive volcanism in climate change (Timmermann 2012). Climate change and solid earth properties linked with volcanism, such as geothermal flux, influence biotic distributions (Fraser et al. 2014). Volcanism may affect ice sheet dynamics (Vogel & Tulaczyk 2006, Corr & Vaughan 2008). The extent and timing of past volcanism in Antarctica, now concealed, must be documented to better understand its effects on the lithosphere, ice sheets and climate (Q.38). Volcanism and seismicity may be triggered by changing ice sheet mass (Stewart et al. 2000, Sigmundsson et al. 2010, Tuffen 2013) and vertical displacements of Earth’s surface due to ice load fluctuations may influence ice sheet stability (Gómez et al. 2010). Antarctica currently has ongoing magmatism beneath the ice sheets (Lough et al. 2013), rapid uplift is already underway where recent ice loss has occurred and the underlying deep mantle is mechanically weak (Groh et al. 2012, Nield et al. 2014). An improved understanding of crust and mantle properties (Q.37), and development of models for Earth deformation and volcanic activity as the ice sheet changes in the future (Q.41) are required to better constrain future trends in volcanism and crustal deformation.

The link between dynamic earth processes and ice sheets is especially important in Antarctica. Tectonics and surface processes control the formation of mountain peaks where ice sheets first grow (DeConto & Pollard 2003), the basins where their products are deposited (Naish et al. 2009) and the extent of continental terrain available to host ice sheets (Wilson et al. 2012). The strength of the crust and mantle control how the Earth responds to ice loads (Deroo et al. 2013). Subglacial morphology and geological structure (Q.26) are primary influences on ice dynamics and subglacial hydrological regimes (Schoof & Hewitt 2013). High-resolution continent-wide mapping of topography and geological architecture, and sampling of bedrock and basins beneath the ice, are essential for next-generation coupled climate–ice sheet models (Q.32). Geothermal heat flux, virtually unknown across Antarctica (Shapiro & Ritzwoller 2004, Carson et al. 2014), is a key control on ice behaviour and subglacial hydrology (Q.27) (Llubes et al. 2006) and may indicate the age and extent of crustal terranes and sedimentary basins (Q.36).

Remarkable ancient landscapes beneath ice cover reveal the history of interactions between ice and the solid earth (Jamieson et al. 2010, Rose et al. 2013, Thomson et al. 2013). Dating these landscapes using emerging techniques will lead to new paradigms on both landscape history and surface processes (Q.39). Understanding erosion processes and rates of geomorphological change across the subglacial terrain will enable scientists to decipher feedbacks between tectonic surface displacement, global climate and, critically, the growth and demise of ice sheets. Relative sea level records provide historical data on ice mass change.
indicating when and where ice has been lost (Q.40). Contemporary changes in bedrock elevation provide a critical proxy record of both past and modern ice mass change (Q.40), modulated by tectonics and the strength of the crust and mantle (Q.37). Archives in rocks deposited in subglacial and proximal marine basins since the development of continental-scale Antarctic glaciation c. 34 million years ago (Q.34) will provide crucial deep-time records to validate model predictions of climate, ice sheet and sea level change (Naish et al. 2009, Bowman et al. 2013, Cook et al. 2013b, DeSantis et al. 2009). Documenting the status of permafrost (Q.42) in a warming world (Bockheim et al. 2013) will better define influences on the availability of water in terrestrial ecosystems (Smith et al. 2014) and the potential for release of greenhouse gases (Q.10) (DeConto et al. 2012, Wadham et al. 2012, 2013).

Antarctic life on the precipice (Table IV)

Antarctic living systems have long been thought of as generally simple and species poor, post-glacial, and exceptionally isolated, residing at the low end of the Earth’s latitudinal diversity gradient. Over the last decade, a very different picture of the region’s biota is emerging. Several taxa and ecosystems, for example those in the deep sea (Brandt et al. 2007) and elsewhere (Clarke & Johnston 2003, Cary et al. 2010), are highly diverse. Regional and global connectivity is greater than supposed (Brandt et al. 2007), and molecular studies have revealed long histories of continental occupancy (Fraser et al. 2012). Antarctic living systems nonetheless occupy a region characterized by environmental extremes typically stressful to life. Temperatures are low, seasonality is pronounced, disturbance is common, and environments are exceptionally patchy (Cary et al. 2010, Rogers et al. 2012b, Gutt et al. 2013, Fraser et al. 2014). Although life has clearly adapted to these conditions (Rogers et al. 2012a), the basis of this adaptation at the genomic, molecular and cellular levels, the rates of evolution in the region compared with elsewhere, and how the spatial arrangement of populations affects evolutionary and ecological change remain poorly known (Q.43 and Q.44).
Antarctic taxa are rarely involved in global analyses of evolutionary rate variation (Convey et al. 2014), despite the fundamental scientific insights that doing so will bring. Although variation in diversity among groups is appreciated, fresh perspectives are required to understand the role of past events and to elucidate the drivers of diversification that underlie such variation. These include investigation of past events in the Earth’s history, and modern ‘omic’ and ecological approaches (Q.45, Q.46 and Q.47). Such understanding, as well as that obtained from investigating the relative roles of phenotypic plasticity and among-generational change (Gutt et al. 2012), is also important for forecasting individual and population-level responses to modern environmental change (Q.11, Q.48, Q.58 and Q.63). Such change impacts diversity, and genomic and food resources (Tin et al. 2009, Chown et al. 2012b, Turner et al. 2013).

In Antarctic marine systems, environmental change drivers include changing climates, sea ice and wind conditions, ocean acidification, increasing resource exploitation, pollution and the threat of biological invasions, and in turn will have important impacts on key processes such as CO₂ uptake (Q.22, Q.23, Q.52, Q.54, Q.57, Q.60, Q.61 and Q.65). Connections between shallower water and deep sea species and ecosystems, and the effect of modifications of deep water formation and environmental change on these interactions are poorly understood (Q.62). For terrestrial systems, the drivers include climate change, the impacts of invasive alien species, local pollution and increasing human impacts (Q.52, Q.53 and Q.54). Changing infectious disease risks are important in both systems (Kerry & Riddle 2009), and for humans, but these risks and their consequences are little investigated (Q.56 and Q.80).

While studies of the outcomes of single change drivers are underway, investigations of interactions among them are uncommon (Byrne & Przeslawski 2013). Nonetheless, it is clear that environments seldom vary in a simple way, and that many kinds of environmental change are simultaneously taking place. Investigating such interactions is complicated by the difficulty of the large experiments required. New techniques will be needed to overcome these limitations (Q.50 and Q.64). Because many systems have thresholds, which are often irreversible (Barnosky et al. 2012), incorporating forecasts of when such thresholds may be reached, especially in response to extreme events, is a critical requirement for future work (Q.49 and Q.63). Little is known about how crossing these thresholds might affect Antarctic biodiversity and its increasing importance as a valuable resource for human livelihoods.

Likewise, knowledge is scant about how changing physical conditions, such as permafrost on land, sea ice change in the intertidal and deep water formation, might affect biodiversity, or whether some taxa may be used as indicators of the impacts of these changes (Q.42, Q.62 and Q.65). Major marine monitoring programmes currently rely on specific species as biological indicators, but among these species variable and incongruent responses are already clear (Constable et al. 2014). The mechanisms that underlie these trends and how they relate to other taxa and ecosystems are unknown. Management responses, to secure the biodiversity and resources of the region are dependent on such information. Conservation management actions also depend on other knowledge, such as being able to distinguish range shifts from anthropogenic introductions in marine and terrestrial systems (Chown et al. 2012a) (Q.55 and Q.66). Genetic repositories and similar ex situ conservation measures will serve critical roles in defining and preserving existing biodiversity (Q.67), though they are little explored in the region. Conservation approaches to secure evolutionary

<table>
<thead>
<tr>
<th>Table V. Antarctic and Southern Ocean Science Horizon Scan questions in clusters ‘Near-Earth space and beyond – eyes on the sky’ and ‘Human presence in Antarctica’.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-Earth space and beyond – eyes on the sky</td>
</tr>
<tr>
<td>69. What happened in the first second after the universe began?</td>
</tr>
<tr>
<td>70. What is the nature of the Dark Universe and how is it affecting us?</td>
</tr>
<tr>
<td>71. What are the differences in the inter-hemispheric conjugacy between the ionosphere and that in the lower, middle and upper atmospheres, and what causes those differences? (Cross-cuts ‘Antarctic atmosphere’)</td>
</tr>
<tr>
<td>72. How does space weather influence the polar ionosphere and what are the wider implications for the global atmosphere? (Cross-cuts ‘Antarctic atmosphere’)</td>
</tr>
<tr>
<td>73. How do the generation, propagation, variability and climatology of atmospheric waves affect atmospheric processes over Antarctica and the Southern Ocean? (Cross-cuts ‘Antarctic atmosphere’)</td>
</tr>
<tr>
<td>79. What is the current and potential value of Antarctic ecosystem services?</td>
</tr>
</tbody>
</table>

Questions are assigned numbers for ease of referencing and do not indicate relative importance or rank-order within or between clusters.

Questions that cross-cut clusters are indicated with red italics.
Near-Earth space and beyond – eyes on the sky (Table V)

Looking outward into space from Antarctica holds the promise of answering long-standing cosmological questions about our place in the universe and whether we are alone. Antarctica offers a unique vantage point from which to observe space, ranging from the upper levels of the atmosphere to the edge of the universe. Astrophysical observations require minimum interference from the Earth’s atmosphere; low thermal background, low absorption and high angular resolution. Programmes that benefit most from these conditions are those aimed at understanding the overarching processes in the universe, from the origin of structure in the first few moments after the Big Bang (Q.69), through the nature of dark matter (Q.70) and the evolution of galaxies, to the birth and life-cycle of stars, and the formation of planetary systems around those stars. Antarctic observatories can be justified only for science that cannot be done cost-effectively, or at all, from lower latitude locations.

The Antarctic plateau is the only place on Earth where space observations at terahertz frequencies can be efficiently conducted (Yang et al. 2010), and blue ice areas are ideal for meteorite collection where ice flow and ablation bring them to the surface (Harvey 2003). Experiments already deployed at the South Pole, on the Antarctic high-plateau and as balloon payloads have demonstrated the advantages of observing space from Antarctica (Burton 2010). Key understanding of many aspects about the birth of the universe has come from Cosmic Microwave Background observations from the South Pole and McMurdo Stations (De Bernardis et al. 2000, Hanson et al. 2013, Ade et al. 2014). Dark matter makes up some 27% of the universe, while dark energy represents another 69%. ‘Normal’ matter makes up the remaining 4%, although even this includes ultra-high energy particles whose origin is unknown (Hoover et al. 2010). Identifying the origin of neutrinos is yet another puzzle (Aartsen et al. 2013). Unravelling the mysteries of the Dark Universe is one of the Twenty-first Century’s most intriguing challenges (Q.70). Twenty years ago, no planets were known outside the solar system. As of May 2014, over 1700 planets around other stars have been confirmed (NASA 2014). In 20 years’ time, studies of the atmospheric composition of these extra-solar planets should be routine and a major goal is detection of the presence of extra-terrestrial life. The diversity and evolution of Antarctic life may hold clues to the existence of life elsewhere in the universe and how best to unequivocally detect it (Q.47).

Conditions in interplanetary space, and how changes in this environment affect Earth’s upper atmosphere, are known as ‘space weather’. Inter-hemispheric conjugacy is the simultaneous response of magnetically paired regions of the Earth’s two hemispheres to external forcing. Understanding this phenomenon in the polar regions remains a challenge. The extent to which conjugacy varies throughout the upper regions of the atmosphere is unknown (Q.71). The polar regions are particularly susceptible to the effects of space weather, as mass, momentum and energy of the solar wind are funnelled down the Earth’s magnetic field lines. Understanding how the solar wind affects the polar upper atmosphere, and how these effects propagate around the globe, is a pressing scientific challenge with significant financial implications (Q.72). Upper atmospheric disturbances have the potential to disrupt communications, GPS navigation and electrical power systems. Therefore, a capability to predict space weather, and its impact, is vital (Baker et al. 2012).

Atmospheric waves range in scale from localized disturbances to planetary-scale waves (e.g. Rossby waves; Lанzerotti & Park 2013). They include predictable phenomena, such as atmospheric tides, and one-off events as a result of, for example, earthquakes. Understanding the effect that waves generated in the polar regions have on the rest of the globe is crucial to the further development of global climate models (Q.73).

Human presence in Antarctica (Table V)

The presence of humans in the Antarctic region is multifaceted. While human impacts are well understood in some contexts (Frenot et al. 2005, Tin et al. 2009, Klein et al. 2014), in others they are not as well characterized. Human activities far removed from Antarctica also have an influence on the Antarctic environment, including ozone depletion (Q.11), climate warming (various Qs) and atmospheric transport of pollutants (Q.52 and Q.53). Indications are that human presence in the Antarctic will increase and diversify in the next two decades (Chown et al. 2012b, Woehler et al. 2013). Pressures to exploit Antarctic fisheries and oil, gas and mineral deposits are expected to increase as the global population grows (Q.58). Interest in discovering new biological products and pressures from tourism are both mounting and may diminish Antarctic wilderness values (Q.78). Possible land-based and expanded adventure tourism may strain current tourism regulatory regimes (Bastmeijer et al. 2008). Technological advances and climate change may enable large-scale, direct human modifications of the
Antarctic environment and facilitate access to regions once thought to be protected by their sheer isolation and inhospitable nature (Q.75 and Q.77). As more people visit and the scope of activities diversifies, the risk of introduction of invasive species (Q.55), diseases and pathogens, whose impacts and abilities to adapt to the Antarctic environment are now only beginning to be understood (Frenot et al. 2005, Convey et al. 2014), will increase (Q.56 and Q.80). How humans themselves, and their behaviours, will adapt to and mitigate the risks of more frequent and longer stays in this extreme environment remains an open question (Q.80).

While many states have yet to accede to the Antarctic Treaty and its conservation measures and conventions, national interest in establishing or expanding operations in Antarctica signal changing priorities and motivations for a presence in the region (Q.76) (Brady 2012). The Antarctic governance regime is being tested by these pressures as it manages progressively more intractable environmental concerns within a changing Antarctic security and geopolitical framework (Q.76) (Hemmings 2009, Dodds 2010, Rothwell 2010, Joyner 2011, Chown et al. 2012b, Foster 2013, Hemmings et al. 2013).

Antarctic international governance, and much of the co-operation in scientific endeavours, is grounded in the Antarctic Treaty System. The number of nations that are signatories or have acceded to the regulatory framework of the Antarctic Treaty has increased in recent years (e.g. Monaco 2008, Belarus 2009, Portugal 2011, Malaysia 2011 and Pakistan 2012) and now number fifty. This includes a significant percentage of the world’s population; however, it is less than 26% of the 193 member nations of the United Nations, and there are noticeable regions of the world that are not represented, including Africa and the Middle East. Since the inception of the Treaty, only 17 additional countries have risen to the level of a signatory which allows full participation in decision making. National interest in establishing or expanding operations has led to the establishment of new Antarctic stations (e.g. Belgium, India, China and Korea), the replacement of aging stations (e.g. UK and Germany) and the building of ice capable ships to increase access (e.g. China and Korea). States that have not acceded to the Antarctic Treaty may have interests in resource exploitation in the Antarctic, and non-state actors may become important. External pressures and changing global geopolitical configurations may adversely affect Antarctic governance and the conduct of science (Q.77).

Many of the challenges resulting from the presence of humans in Antarctica can only be addressed with a sound science evidence base. If Antarctica’s ecosystems and intrinsic values are to be protected, lessons learned elsewhere and the principles of modern conservation science must be applied (Shaw et al. 2014). The efficacy of various conservation strategies will depend on being able to document attainment of their objectives through science-based approaches (Q.51, Q.66 and Q.68). The goal of sustainable management of marine resource extraction, such as fisheries, can best be supported through evidence-based management within the context of a changing climate (Q.58 and Q.61). Robust predictions of future human activities in Antarctica and understanding the value humans place on Antarctica (Grant et al. 2013) (Q.79) are essential. The recognition of the role that humans play in observed change relies on being able to discern anthropogenic change from natural variability to inform conservation and protection efforts, and policy making (Q.74).

The way forward

Technological challenges and extraordinary logistical requirements

Answering the 80 scientific questions identified through the horizon scan will require solutions to a wide array of technological challenges, and extraordinary logistical support and access to Antarctica and the Southern Ocean. Innovative experimental designs, new applications of existing technology, invention of next-generation technologies and the development of novel air-, space- and animal-borne observing or logging technologies will be essential. Methodologies, instruments and sensors, from those that can probe at the cellular level to those that can see to the edge of the universe, will be needed. Some of these observing technologies will need to be autonomously deployed for extended periods. New, unbiased and ‘clean’ methodologies are required for the retrieval of samples of air, biota, sediment, rock, ice and water under challenging conditions in remote locations such as beneath ice shelves, the deep sea and under ice sheets.

Future research in Antarctica will require expanded, year-round access to the continent and the Southern Ocean. Innovation is also needed to allow those who may never go to the ice to access information, data and samples in real-time or through archives, databases and repositories. Improved coupled, integrated models are essential to portray what is a highly inter-connected and inter-dependent system of systems, if predictions with the precision and spatial resolution that are required for policy and decision making are to be possible. Astrophysics research, including cosmology, will require exquisitely sensitive sensors and facilities to house these capabilities on the high Antarctic plateau and deploy on ultra-long duration balloons. Networks of stations that continuously monitor the Earth’s upper atmosphere in both polar regions will be essential to support near-Earth space research. Barriers to international collaboration need to be minimized, and new innovative, mutually beneficial and efficient models for partnerships that share
ideas, data, logistics and facilities need to be explored. In turn, enhanced science support will require innovative and effective conservation and policy regimes to facilitate science while minimizing environmental compromises.

Horizon scan lessons learned

As the 1st Antarctic and Southern Ocean Science Horizon Scan, this view of the future will need to be revised and updated on a regular basis taking into account the latest scientific and global developments. Each scan begins with a set of assumptions and the current state-of-knowledge, and these underpinnings will undoubtedly change over time. Regular and sustained forward thinking exercises allow for course corrections and recognition of emerging trends that are critical to shorter timeframe strategic planning efforts.

Several lessons learned from this exercise will benefit future horizon scans. Preparation and consultation leading up to the final gathering of experts is essential to optimize the limited time available. A key element of the philosophy of a horizon scan is to set aside self-interest and short-term needs, and to focus on the future of the science a whole. Early selection and engagement of a sub-set of people to lead discussions and produce scan reports is essential. A cadre of experienced assistants conversant with the technologies and methodologies of the scan is critical for ensuring that Retreat time is well spent and the process is efficiently managed. Sorting (binning) of questions at the onset, scheduling and merging of sessions during the Retreat, clustering of final questions, and naming of clusters/themes are all important elements of the process that require extensive discussion. The final cluster/theme ‘names’ are important in outreach and dissemination of the outcomes beyond the experts.

An extensive and well organized plan for the dissemination of horizon scan outputs is essential to optimize impact and visibility. Antarctic and Southern Ocean science objectives and questions should be globally connected and not overly parochial, having relevance beyond the region while maintaining a place for individual researchers and curiosity-driven science. The breadth of modern Antarctic science is wide and there are many ‘communities’. Any vision must capture this full view with special effort to ensure that smaller communities are adequately represented. In the end, Antarctic and Southern Ocean science competes with all other areas of science for resources and is best justified on the excellence, impact and uniqueness of the opportunity.

The promise of Antarctic and Southern Ocean science

Society faces many daunting, global-scale issues including a warming atmosphere and ocean, rising sea level and threats to living systems and the services they deliver. Antarctic and Southern Ocean science has been (Nature web focus 2014), and will continue to be, critical for discerning how human actions are altering our planet. Building on the foundations of past successes, the new knowledge to be gained from next-generation Antarctic and Southern Ocean science will be essential for informing society’s decisions as we try to discern those actions that are most likely to affect our planet’s present trajectory.

The first horizon scan has laid out a detailed and ambitious roadmap that will require a co-ordinated portfolio of international scientific efforts to realize the potential offered by science in the southern polar regions. Furthermore, Antarctic science underpins the management and governance of Antarctica through the Antarctic Treaty System. The maintenance of the region as an international place for peace and scientific research relies on authoritative and objective scientific advice. Co-ordination of Antarctic and Arctic research will also be increasingly important, as both poles exert influences and respond to changes in the earth and climate systems in ways not seen elsewhere on the planet. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential. No one scientist, programme or even nation can reach these lofty aspirations alone, and success will be borne out by the practical solutions delivered as we navigate our way together into an uncharted future.

Acknowledgements

The authors of this paper and the organizers of the 1st SCAR Antarctic and Southern Ocean Science Horizon Scan recognize the financial support that made this event possible. Major financial support was provided by the Tinker Foundation. Substantial financial support was provided by Antarctica New Zealand, The New Zealand Antarctic Research Institute, the Scientific Committee on Antarctic Research (SCAR), the Council of Managers of National Antarctic Programs (COMNAP), the Alfred Wegner Institut, Helmholtz Zentrum für Polar und Meeresforschung (Germany), and the British Antarctic Survey (UK). Support was provided by the Antarctic Climate & Ecosystems Cooperative Research Centre (Australia), the Canadian Polar Commission, the Climate and Cryosphere Program, the Instituto Antártico Chileno, Kelly Tarlton’s Sea Life Aquarium, the Korean Polar Research Institute, Monash University (Australia), the National Institute of Polar Research (Japan), New Zealand Post, the Polar Research Institute of China, the Programma Nazionale di Ricerche in Antartide (Italy) and the University of Malaya. The support of the SCAR Secretariat and Antarctica New Zealand staff is gratefully recognized. The authors thank three anonymous reviewers for their constructive
comments that improved the manuscript. Finally, thank you to those that submitted questions and nominated Retreat attendees. The contribution of each author is specified in Supplemental Table S1.

Supplemental material

Two supplemental tables will be found at http://dx.doi.org/10.1017/S0954102014000674.

References

