GRAPE (GNSS Research and Application for Polar Environment)
2018-19 Report

Officers: Giorgiana De Franceschi - INGV, Rome, Italy
Nicolas Bergeot - ROB, Belgium

GRAPE was born in 2012 and it is a joint Physical Science and Geoscience (expert) group. The group is working to enlarge the scientific and technological issues within Solar Terrestrial interactions and Space Weather mainly based on Radio Science. This action will be presented to the next SCAR2020 in order to discuss a possible new SRP (RESOURCE) or a new expert group embedding GRAPE that will finish its action in 2020.

Optional additional information
Outreach, communication and capacity-building activities


• Communication activity - Luca Spogli "Space climate and space weather from the Arctic", lecture in the frame of the "Master in Sustainable Development, Geopolitics of Resources and Arctic Studies" September 2018, (SIOI -www.sioi.org/en). The objective of the Master was to develop skills and competences in the fields of green economy, energy geopolitics and resources with particular attention to eco-sustainability and responsible use of the territory. An in-depth focus was dedicated to the geo-strategic and economic importance of the Arctic regions, for which space weather related issues have a significant role.

• Communication activity - Federica La Longa, Massimo Crescimbene, Lucilla Alfonsi, Claudio Cesaroni & Vincenzo Romano (2018). Expedition to the South Pole: experience of the laboratory game on polar sciences with primary schools, https://doi.org/10.3301/ROL.2018.25
Updates for your group’s SCAR web page
GRAPE WEB pages www.grape.scar.org are continuously updated as well the SCAR web at https://www.scar.org/science/grape/grapel.

Notable Papers

This work provides an unprecedented description of the climatology of ionospheric irregularities over the Arctic derived from the longest GNSS data series ever collected for this specific aim. The results offer realistic features of the high latitude ionosphere that can substantially contribute to the necessary improvements of forecasting models, providing a broad spectrum of ionospheric reactions to different space weather conditions.


This work highlights the interaction between lower and upper atmosphere and the influence of the polar/high latitude on the tropical cyclones. Rapid intensification of tropical storms tends to follow arrivals of high-speed solar wind. Atmospheric gravity waves launched from high latitudes can reach tropical cyclones, can trigger moist instabilities leading to convective bursts, linked to rapid intensification of tropical cyclones.

Other information for publicity purposes
Please add here details of, or links to any other information we may use for publicity purposes, such as photos, infographics, quotes and layperson’s summaries of your research.

- GRAPE is in contact with Alice Oates to which some photos and videos have been sent recently (March 2019).

Any other information or issues you would like to raise
Sessions planned for forthcoming events:
- REMOTE SENSING OF THE POLAR ATMOSPHERE, session submitted to SCAR2020 OSC (Hobart,Tasmania, 3-7 August 2019) within Harnessing emerging technologies for Antarctic Science
- SPACE WEATHER FROM ANTARCTICA: RECENT ADVANCEMENTS AND FUTURE CHALLENGES, session submitted to SCAR2020 OSC (Hobart,Tasmania, 3-7 August 2019) within Astronomy and Astrophysics in Antarctica